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Abstract. When utilizing information from increasingly voluminous 
biomedical and genomic databases into actionable data for health care, 
treatment of temporal data still remains a challenge.  Frequently temporal 
research is based on stimulus response studies and includes searching for 
temporal effects or time patterns in gene sets. Digital gene expression (DGE) 
technologies like rna-seq seem to replace microarray technologies in the near 
future for many functional genomics applications.  
This study explores the feasibility of searching for temporal patterns based on 
knowledge-based temporal abstractions. Those imply conversion of 
expression values into an interval-based qualitative representation expressing 
amount of change over time. The amount of change is determined by 
statistical significance. For microarray studies one approach uses 
Bioconductor limma software modelling the normalized intensities in the 
framework of the linear model. Empirical Bayes methods result in a 
moderated t-statistic that reduces the pooled variance by borrowing 
information across all genes. We use the moderated paired t-test to determine 
significant differences in consecutive time points. While this approach 
assumes that the experiment is based on one particular platform, comparison 
across platforms can be done by comparing p-values. Therefore, in our model 
the p-values and the direction of the change inform the temporal abstraction. 
We discuss this approach in the framework of our SPOT software.  

Keywords: Temporal representation and reasoning, statistical, decision 
support, microarray, rna-seq. 

1 Introduction 

When translating information captured in increasingly voluminous biomedical and 
genomic databases into actionable data for health care or prevention, treatment of 
temporal data still remains a challenge.  The challenge is not so much in modeling 
complex pattern of intervals like in clinical domains (see [1]), but more in classifying 
different types of intervals in terms of trends, as “increasing”, “decreasing”, 
“constant” etc. (see [2]). Biologists typically rely on statistical measures for those 
purposes. Frequently temporal research is based on stimulus response studies and 
includes searching for temporal effects or time patterns in gene sets or pathways 
across data from different studies. A large body of information is available in public 
repositories like NCBI GEO and ArrayExpress. It appears that digital gene expression 



(DGE) technologies like rna-seq will replace microarray technologies in the near 
future for many functional genomics applications.  

This paper explores the feasibility of searching for temporal pattern based on 
temporal modeling through knowledge-based temporal abstractions that allow for 
conversion of expression values into an interval-based qualitative representation 
expressing the amount of change over time. It also allows to compare studies where 
the experimenter chose different pattern of time points.  Change in these types of 
studies is typically determined by statistical significance. Assume a researcher 
conducted a temporal study where he/she discovered peaks in a set of genes that 
might be found in the same biological pathway. He/she now wants to see if finding 
the same effect in related studies can extend his/her hypothesis. Although different 
studies address similar questions a comparative search through public databases is 
impeded by the use of heterogeneous platforms and analysis methods. We describe a 
model that can help alleviate those problems.  

2 Methodology 

Databases that contain temporal gene expression data are organized in a way that data 
are recorded at the particular time point the measurement took place, i.e., the tissue 
sample was taken. These time points are not standardized but change from experiment 
to experiment and are determined by the experimenter as he/she sees best fit for the 
biological question that will be answered by the experiment. If we look for time 
patterns, e.g., peaks, in that database, standard query languages like SQL are not 
helpful here when searching across different experiments with potentially different 
time point patterns.  

1.1 Temporal Abstraction 

We use Knowledge Based Temporal Abstraction (KBTA) to transform the data into a 
qualitative representation of temporal change based on intervals, not discrete temporal 
data. KBTA is the task of summarizing large amounts of time-oriented data using 
domain-specific knowledge (see Shahar [2]). The KBTA method is based a formal 
model of input and output entities, their relations, and the domain-specific properties 
that are associated with these entities - called the KBTA ontology. Shahar describes 
four different output types, state, gradient, rate, and pattern abstraction. For the 
domain of gene expression studies predominantly the gradient type representing 
temporal trends is important. It might represent increasing, decreasing or constant 
values within a specific time interval and could be labeled “increase”, “decrease”, 
“constant”, etc. The temporal interval can form patterns using Allen’s approach of 
temporal relationships [4]. For example, a “peak” can be defined as an increasing 
interval immediately followed by a decreasing one. Thus peaks can be found even if 
experiments use different time point patterns. 

There is a variety of implementations of the KBTA method in different domains, 
many clinical. Almost all of them focus on describing individual patient courses for 
therapeutic purposes, e.g. [1], but there are a few genomic applications, e.g., [3]. The 



key to this methodology is to use domain-specific knowledge to determine, if values 
are changing or remaining constant. Several packages and tools are currently 
available, for instance the virtualArray software package in Bioconductor can 
combine raw data sets using almost any chip types based on current annotations from 
NCBI GEO. No such tool is currently available for temporal studies.  

The goal of this study is to make temporal information available that can be found 
in publicly available repositories. We use as an example NCBI GEO that contains 
data from both microarray and rna-seq gene expression studies. For microarray 
studies, it contains in most of the cases both raw data sets and curated data. To 
accommodate for potential bias based in experimental conditions data typically have 
to be cleaned and normalized before they can be used for analysis. There are different 
normalization procedures, which are chosen by the authors of the publication to their 
best knowledge. The curated data sets (Genomic Data Structure - GDS - in NCBI 
terms) are normalized. Although this includes a subjective element, we chose to use 
GDS data whenever available, because the best represent the statistical results 
communicated in the corresponding publications. To implement KBTA in gene 
expression studies we use mostly the same methodology that a biologist would use to 
determine trends in high-throughput data, i.e., by means of statistical significance.  

1.2 Domain Specific Knowledge 

Due to the relative high cost of high-throughput sequencing technology sample sizes 
in gene expression studies are in general small resulting in little statistical power. To 
accommodate for that, empirical Bayes methods are employed. For microarray studies 
one approach uses the Bioconductor limma software modelling the normalized 
intensities in the framework of the linear model. Using the empirical Bayes 
methodology, a moderated t-statistic [5] is calculated that reduces the polled variance 
by borrowing information across all genes of the particular chip. We use the 
moderated paired t-test to determine, if there are significant differences in consecutive 
time points. If the difference is significant, we label the interval as increasing or 
decreasing depending on the direction of change. We don’t adjust for the length of the 
interval assuming that, if a biological signal is present, it does not depend on the 
length of the interval. While this approach assumes that the experiment is based on 
one particular platform, comparison across platforms can be done by comparing p-
values assuming that p-values accurately measure biological effects, and those don’t 
depend on the platform. Therefore, in our model the p-values and the direction of the 
change inform the temporal abstraction, e.g., no significance means “constant”.  

1.3 RNA-seq Studies 

It is expected that emerging digital gene expression (DGE) technologies will overtake 
microarray technologies in the near future for many functional genomics applications. 
In contrast to microarrays, rna-seq array require a computing intensive reassembly 
step for up to 300M reads with subsequent steps, typically using the Tuxedo protocol 
[6]. One of the fundamental data analysis tasks, especially for gene expression 
studies, involves determining whether there is evidence that counts for a transcript or 
exon are significantly different across experimental conditions [7]. There are at least 



five different competing approaches for differential expression (DE) analysis, 
described by different software packages that implement those: ballgown, Cuffdiff2.1, 
EdgeR, DEseq2, DEGseq, BaySeq, Voom[9], etc. Some approaches are based on 
assuming a negative binomial distribution. For DGE count data we use the voom 
transformation [9]. Applied to the read counts it converts the counts to log-counts per 
million with associated precision weights allowing RNA-seq data to be analyzed the 
same way as microarray data. This allows us to have a unified approach and use 
basically the same program for MA and rna-seq data. The result of the process is 
again a gene/value matrix with associated moderated t-statistics as in the previous 
section. The empirical Bayes approach has been applied to count data as well under 
the negative binomial distribution and several above mentioned programs employ that 
approach. Future research will show which approach gives the most reliable and 
trustworthy results, although our chosen edgeR/limma/voom approach with TMM 
normalization seems to be a likely candidate (see, e.g., [8]). 

1.4 P-value Adjustments 

For DE studies many genes have to be tested for differential expression on the same 
data set, which leads to a depreciation of the the nominal p-value. Therefore, the p-
value has to be adjusted. Two methods are typically applied, the Bonferroni 
correction or the false discovery rate (FDR) approach. Both approaches have their 
drawbacks and are missing some significant genes. While the focus of the FDR is on 
controlling the false positives while potentially missing many significant genes, the 
Bonferroni correction is very conservative in assigning significance. FDR is the most 
common approach; therefore, we use that adjustment also to have a more likely match 
with published results and biological verification. Significant genes are verified, e.g. 
by qPCR, in almost all publications. 

Since both the Bonferroni correction and FDR are potentially fail to detect a few 
significant genes, researchers frequently apply prior knowledge about known highly 
correlated gene sets, for instance biological pathways as they are collected in the 
KEGG pathway database or groups of genes that have the same functional annotation 
in Gene Ontology (GO). One popular approach is Gene Set Enrichment Analysis that 
calculates a single p-value for an entire gene set.  

3 Implementation 

For performance reasons most of the data are preprocessed and stored in a MySQL 
database. For microarray studies we use the GDS format with annotation files, which 
are normalized, and then extract the data matrix. For high throughput sequencing 
RNA-seq studies data are preprocessed as described above and normalized resulting 
in a data matrix. We use R Bioconductor (BioC) with limma and the voom 
transformation for rna-seq. The necessary databases are accessed using standard BioC 
tools like GEOmetadb. This implementation has been integrated into the SPOT web 
application [10] via HTML, JavaScript and PHP. Complex time patterns can be 
modelled using Protégé as has been described in an earlier publication [10]. 



The above described approach works for searches within a species and if all 
platforms involved in the search share the same genes. For searches across species we 
determine the orthologs, i.e., genes in different species that evolved from a common 
ancestral gene by speciation, from the InParanoid database and translate genes in 
between platforms of different species.  

4 Discussion and Future Aspects 

While microarray DE studies are pretty much standardized, there is quite a variety of 
different pipelines for the analysis of rna-seq data sets. This poses a challenge for our 
model to treat rna-seq data since the results from our unified approach may differ 
from the actual confirmed results in the corresponding publications, because different 
analysis pipelines typically find different differentially expressed albeit mostly 
overlapping gene sets [8]. Since only gene sets from the original publication are 
potentially confirmed by qPCR, our tool might use unconfirmed results. One solution 
could be implementing different standard pipelines and giving the user the choice, 
which one to use. Given, that we describe an exploratory approach here, this might 
however be of minor concern. It is also not intended for modelling (see e.g. [11]). 
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