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ABSTRACT 

This paper develops a non-precision, three-dimensional, geodetic positioning algorithm 

for airborne vehicles. The algorithm leverages the proliferation of Automatic Dependent 

Surveillance – Broadcast (ADS-B) equipped aircraft, utilizing them as airborne navigation aids 

to generate an RF Angle-of-Arrival (AOA) and Angle-of-Elevation (AOE) based geodetic 

position. The resulting geodetic position can serve as a redundant navigation system for use 

during locally limited Global Navigation Satellite System (GNSS) availability, be used to 

validate on-board satellite navigation systems in an effort to detect local spoofing attempts, and 

be used to validate ADS-B position reports.  

The navigation algorithm is an implementation of an Extended Kalman Filter (EKF) that 

is loosely based on Simultaneous Localization and Mapping (SLAM), in that it tracks ADS-B 

capable aircraft while simultaneously determining the geodetic position and velocity of the host 

vehicle. Unlike SLAM, where the absolute location – latitude/longitude – of the landmarks is 

unknown and must be estimated as the vehicle encounters them, the absolute position of the 

airborne navigation aids is typically well-known and periodically reported in the ADS-B data set. 

Because the absolute position of the navigation aids are known, the resulting host vehicle 

position will also be an absolute, rather than a relative position. Secondarily, the continuous 

tracking of the airborne navigation aids allows reported ADS-B positions to be validated against 

the estimated navigation aid position; thereby, concurrently accomplishing ADS-B validation 

and host vehicle geolocation.  

This research has demonstrated through a series of simulated Monte-Carlo tests that the 

algorithm is capable of generating valid position estimates, along with a reliable estimate of its 

accuracy, across a variety of anticipated input conditions. With multiple GNSS quality 
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navigation aids available, mean position errors below 225 meters were observed. As the quality 

of the navigation aids decreased, so too did the accuracy of the algorithm. Utilizing navigation 

aids with an accuracy of 4 nautical miles (95% containment) resulted in mean position errors on 

the order of 0.75 nautical miles. These results demonstrate that the method is feasible, and even 

under worst case conditions, the accuracy of the position estimate generated by the algorithm 

was sufficient to allow an aircraft to navigate to its destination. 
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MATHEMATICAL SYMBOLS 

Matrices – Typically denoted by boldface capital letters. 

A State transition matrix 

B Input control matrix 

C Coordinate conversion (rotation) matrix 

H Measurement matrix 

I Identity matrix 

K Kalman gain matrix 

P State error covariance matrix 

Q Process noise covariance matrix 

R Measurement noise covariance matrix 

Vectors – Typically denoted by boldface lowercase letters.  

f Non-linear state transition function 

h Non-linear measurement function 

m Landmark location vector 

r Position vector 

u System control input vector 

v System measurement (observation) noise vector 

w System process noise vector 

x System state vector 

z System measurement (observation) vector 
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Sets – Typically denoted by blackboard bold capital letters. 

𝕄 Complete set of all landmarks (landmark set) 

𝕌 Complete history of control inputs (input set) 

𝕏 Complete history of vehicle location (location set) 

ℤ Complete set of all observations (observation set) 

Variables – Typically denoted by normal face characters. 

α Angle of arrival 

β Angle of elevation 

e Earth eccentricity 

f Earth flattening 

φ Geocentric latitude 

Φ Geodetic latitude 

λ Longitude 

Ψ Azimuth angle 

s Spherical distance 

θ Geocentric angle 

𝑅0 Equatorial radius of the Earth 

𝑅𝐸 Transverse radius of curvature 

𝑅𝑚 Mean radius of the Earth 

𝑅𝑁 Meridian radius of curvature 

𝑅𝑝 Polar radius of the Earth 
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Accents 

Circumflex,   ̂ Estimated value 

Diacritic,   ̇ First derivative 

Diaresis,   ̈ Second derivative 

Tilde,   ̃ Measured value 
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ACRONYMS AND ABBREVIATIONS 

ADS-B Automatic Dependent Surveillance Broadcast 

AOA Angle of Arrival 

AOE Angle of Elevation 

AOI Angle of Intersection 

API Application Program Interface 

CDF Cumulative Distribution Function 

DF Direction Finding 

DGPS Differential Global Positioning System 

DOP Dilution of Precision 

ECEF Earth Centered, Earth Fixed 

EKF Extended Kalman Filter 

ENU East, North, Up Frame 

EPU Estimated Position Uncertainty 

ES Extended Squitter 

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques 

FAA Federal Aviation Administration 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

GLONAS Globalnaya Navigazionnaya Sputnikovaya Sistema 

GVA Geometric Vertical Accuracy 

HIL Horizontal Integrity Limit 

HPL Horizontal Protection Limit 
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ICAO International Civil Aviation Organization 

INS Inertial Navigation System 

LOS Line of Sight 

MUSIC Multiple Signal Classification 

NACp Navigation Accuracy Category for Position 

NACv Navigation Accuracy Category for Velocity 

NC ESPRIT Non-Circular Unitary ESPRIT 

NED North, East, Down Frame 

NIC Navigation Integrity Category 

MPU Measured Position Uncertainty 

PDF Probability Density Function 

RC Radius of Containment  

RF Radio Frequency 

RMSE Root Mean Square Error 

RPE Radial Position Error 

RTCA Radio Technical Commission for Aeronautics 

RTK Real Time Kinematics 

SVD ESPRIT Single Value Decomposition ESPRIT 

SLAM Simultaneous Localization and Mapping 

USB Universal Serial Bus 

VEPU Vertical Estimated Position Uncertainty 

VMPU Vertical Measured Position Uncertainty 

VPE Vertical Position Error 
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WAAS Wide Area Augmentation System 

WGS-84 World Geodetic System 1984 
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1.0 INTRODUCTION 

1.1 Problem Description 

Since their deployment, Global Navigation Satellite Systems (GNSS) have set the 

standard for geodetic positioning. These satellite based navigation systems include the likes of 

the Global Positioning System (GPS) developed by the United States, the Galileo system 

deployed by the European Union, and the Globalnaya Navigazionnaya Sputnikovaya Sistema 

(GLONAS) developed by Russia. Unaided, the highly engineered nature of these systems can 

produce geodetic position estimates with errors on the order of 10 meters. Various augmentation 

methods have been developed to further improve the accuracy of GNSS, including but not 

limited to: Wide Area Augmentation System (WAAS), Differential Global Positioning System 

(DGPS), and Real Time Kinematic (RTK) GNSS. Utilizing these augmentation methods can 

improve the accuracy of the GNSS position estimate to the centimeter range. Despite the 

unparalleled accuracy of GNSS systems, the low power of the satellite-based Radio Frequency 

(RF) signals required to formulate the geodetic position estimates leaves GNSS susceptible to a 

lack of availability and spoofing. GNSS may become unavailable due to natural phenomena, 

obstructions in the line of sight to the satellite constellation, or malicious intent. Spoofing, on the 

other hand, is the intentional introduction of a higher power ‘look-a-like’ GNSS signal that 

causes the GNSS receiver to report an incorrect position estimate. It has been widely theorized 

that spoofing can be used to ‘take control’ of a GNSS guided vehicle; therefore, significant 

research has been performed to detect spoofing attempts. 

This paper develops a non-precision, three-dimensional, geodetic positioning algorithm 

for airborne vehicles that is capable of determining the location of the host airborne vehicle with 

position errors on the order of 225 meters. The algorithm leverages the proliferation of 

Automatic Dependent Surveillance – Broadcast (ADS-B) equipped aircraft by utilizing them as 
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airborne navigation aids. The algorithm exploits available ADS-B transmission to generate an 

RF angle-of-arrival (AOA) and angle-of-elevation (AOE) based geodetic position estimate for 

the aircraft receiving the ADS-B data (the host vehicle). The resulting host vehicle position data 

can serve as a redundant navigation system for use during locally limited GNSS availability, be 

used to validate on-board satellite navigation systems in an effort to detect local spoofing 

attempts, and be used to validate ADS-B position reports from other aircraft.  

The algorithm requires that a minimum of two ADS-B capable aircraft are operating 

within ADS-B range of the host vehicle, and that the AOA from these two aircraft form an 

angle-of-intersection (AOI) with the host vehicle that is in the range [20, 60] degrees. An 

illustration depicting the concept is provided in Figure 1-1 with additional details to follow. 

 

 
Figure 1-1: Illustration of the Fundamental Concept to Determine the Geodetic Position of an 

Aircraft Based on the Angle-of-Arrival of ADS-B Data from Aircraft Operating in the Vicinity. 
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Each airborne navigation aid (ADS-B capable aircraft around the perimeter of Figure 1-1) 

periodically transmits its position and velocity, along with an indication of the associated 

uncertainty in these estimates. The magnitude of the position uncertainty for a particular ADS-B 

aircraft is denoted by the size of the circle that is centered on each airborne navigation aid. The 

receiving aircraft measures the AOA and AOE of the ADS-B data, and associates the AOA and 

AOE measurements with the position information from the transmitting aircraft. Combining this 

position, AOA, and AOE data from multiple aircraft – and accounting for the uncertainty in the 

transmitting aircraft’s position, the AOA uncertainty, and the AOE uncertainty – results in a 

closed polygonal region of uncertainty in which the receiving aircraft must reside. This region of 

uncertainty is depicted by the red cross-hatched polygon in Figure 1-1. 

Although this basic concept is easily envisioned as a deterministic process, the theory is 

complicated by several limitations. First, all of the aircraft are in continuous motion. Second, 

ADS-B position reports are subject to latency of up to 0.6 seconds [1]. Third, there is uncertainty 

in the AOA and AOE measurements. And finally, ADS-B position reports from a particular 

aircraft are transmitted at a staggered interval [1], minimizing the likelihood of simultaneously 

receiving position reports from multiple airborne navigation aids. Due to these constraints, the 

receiving aircraft position is not calculated based on the simple deterministic triangulation 

technique illustrated in Figure 1-1. Instead, the system is treated as a stochastic process, whose 

system state is estimated using an implementation of the Extended Kalman Filter (EKF).     

The navigation algorithm itself is loosely based on Simultaneous Localization and 

Mapping (SLAM), in that it tracks ADS-B capable aircraft while simultaneously determining the 

geodetic position and velocity of the host vehicle. Unlike SLAM, where the absolute location – 

latitude/longitude – of the landmarks is unknown and must be estimated as the vehicle 
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encounters them, the absolute position of the airborne navigation aids is reasonably well-known 

and periodically reported in the ADS-B data set. Because the absolute position of the navigation 

aids is known, the resulting host vehicle position will also be an absolute, rather than a relative 

position. Secondarily, the continuous tracking of the airborne navigation aids allows reported 

ADS-B positions to be validated against the estimated navigation aid position; thereby, 

concurrently accomplishing ADS-B validation and host vehicle geolocation. Finally, unlike 

GNSS systems that utilize low power RF signals, ADS-B transmissions are relatively high 

power, ranging from 70 W to 200 W [1], making them very difficult to jam or spoof. 

In summary, this paper presents a non-precision means of determining an airborne 

vehicle’s geodetic position, even in the absence of GNSS position data. Monte-Carlo analysis of 

the algorithm indicates that position errors less than 225 meters can be achieved when multiple 

ADS-B capable aircraft are utilized to construct the position estimate. In addition, this algorithm 

can be used to validate GNSS position reports in a GNSS spoofed environment, and can serve as 

a means to validate ADS-B position reports from suitably equipped aircraft operating in 

proximity to the host vehicle. 

1.2 Scope 

The purpose of this research is to investigate an alternative geodetic positioning 

technique to serve as a non-precision alternative/supplement to GNSS. The system will calculate 

the geodetic position of the host vehicle based on the AOA and AOE of received ADS-B signals 

from aircraft operating within the radio horizon of the host vehicle. The resulting geodetic 

position could then be used to validate GNSS measurements, serve as a failsafe alternative in the 

event of total GNSS failure, or be used to validate ADS-B position reports.  
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It must be emphasized that the current investigation is theoretical in nature; implying that 

the development of custom hardware or the implementation of a fully operational system falls 

outside of the scope of this research. 

1.3 Assumptions 

It is assumed that accurately determining the AOA of ADS-B signals is feasible based on 

the research conducted by Reck et al. in [2], [3], [4], [5], [6], [7] and by Faragher in [8]. Both of 

these researchers, whose publications are summarized in Section 3.0 – Review of Literature, 

empirically demonstrated that the AOA of ADS-B data can be determined at a stationary antenna 

with a Root Mean Square Error (RMSE) of less than 1 degree. The assumption is made for this 

research that the AOE of ADS-B signals can be determined with similar accuracy as AOA. 

Several companies produce 3-dimensional Direction Finding (DF) antennas capable of providing 

both AOA and AOE information including: Applied Signals Intelligence [9] and Aaronia [10]; 

however, neither of these companies makes AOE/AOE accuracy data publicly available.  

The research further assumes that the host vehicle contains a sensor (or suite of sensors) 

capable of providing vehicle orientation and true heading information. This will allow the 

received AOA and AOE data to be expressed in a local coordinate frame relative to true north. It 

is assumed that it will be a function of the direction finding receiver to perform the necessary 

rotations to express the AOA and AOE in a locally level frame. Practically, this could be 

performed by either the direction finding receiver or the by the navigation algorithm. However, 

for clarity of expressing the navigation algorithm, the AOA/AOE rotations will not be included 

in the navigation equations. 

Finally, it is assumed that utilizing a spherical Earth model in place of the more complex 

and realistic oblate spheroid model will provide sufficient accuracy for the purposes of this 

analysis. The level of relative error due to the Earth’s flattening over the somewhat small 
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distance to the radio horizon is expected to result in a small absolute errors that can simply be 

treated as an additional source of uncertainty in the implementation. 
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2.0 BACKGROUND 

This research develops an approach to geodetic positioning that includes the use of a 

somewhat new and emerging technology. Most engineering aspects of the algorithm are well 

understood, but have not been combined in the manner presented in this work. As such, a 

somewhat thorough background is developed in the areas of: ADS-B, Kalman filtering, SLAM, 

Gaussian and Rayleigh random variables, and the equations of geodesic paths and positioning.  

2.1 Automatic Dependent Surveillance – Broadcast 

ADS-B is a modern technology that has been designed to enhance air traffic control’s 

situational awareness of aircraft operations by providing a three-dimensional depiction of each 

ADS-B equipped aircraft’s intended flight path [11]. To accomplish this, each ADS-B equipped 

aircraft periodically transmits its identification, position, altitude, velocity, and other aircraft 

specific information [11]. Both ground stations and suitably equipped aircraft may receive these 

transmissions, enhancing air traffic control and allowing aircraft to maintain adequate separation 

in both controlled and uncontrolled airspace [12]. 

The Federal Aviation Administration (FAA) has mandated that all aircraft operating 

within certain airspace segments over the United States be ADS-B compliant by January 1, 2020 

[12]. The airspace segments requiring ADS-B capability are depicted in Figure 2-1, where the 

required airspace is denoted by the terms  ‘UAT or 1090ES’ or ‘1090ES Required’.  

Although not yet regulatory standard, many aircraft owners have opted to be early 

adapters of the technology. To be ADS-B compliant, each aircraft is required to transmit ADS-B 

data packets on either 978MHz or 1090MHz in accordance with AC 90-114A [12]. All aircraft 

operating in Class A airspace are required to utilize the 1090MHz frequency instead of 978MHz 

[12]. Class A airspace, which extends upwards from 18,000ft mean sea level, is under air traffic 

control, and is typically utilized by commercial aircraft on cross-country flights. 
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According to 2015 data released by the Bureau of Transportation Statistics, there are over 

6,800 commercial aircraft and 210,000 general aviation aircraft registered in the United States 

[13]. A vast majority of these aircraft will be subject to the ADS-B mandate, making them ideal 

candidates to serve as airborne navigation aids in the navigation system described in this paper. 

 
Figure 2-1: Airspace Segments Requiring ADS-B Compliance [12]. 

2.1.1 Data Payload 

The ADS-B data transmitted on 1090MHz is an extension of aircraft transponder Mode S 

capability called Extended Squitter (ES) [1]. The extended data is transmitted in spontaneous 

broadcasts that are 120μs in duration, containing 120 bits, each with a duration of 0.5μs [1]. The 

initial 8 bits contain the message preamble, while the remaining 112 bits contain the message 

payload [1]. The 112 bit payload is divided into the five fields shown in Table 2-1 [1]. 
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Table 2-1: 1090 MHz Extended Squitter Payload [1]. 

LSB MSB Payload Abbreviation Payload Nomenclature 

1 5 DF Downlink Format 

6 8 CA Capability (Message Subtype) 

9 32 AA ICAO Aircraft Address 

33 88 ME Message Data (ADS-B Data) 

89 112 PI Parity/Interrogator ID 

The 5-bit Downlink Format field and the 3-bit Capability field provide information 

describing the type transmitter used to source the ADS-B data and its unique capabilities [1]. 

This information is not directly applicable to the current research and is thus excluded from 

further description. Likewise, the 24-bit Parity/Interrogator ID is also of little consequence to this 

research and additional detail has not been provided. 

2.1.1.1 ICAO Aircraft Address Field 

The International Civil Aviation Organization (ICAO) Aircraft Address field contains the 

unique ICAO identifier for the transmitting installation [1]. This 24-bit field allows for 

unambiguous identification of the source of the transmitted ADS-B data. 

2.1.1.2 Message Data Field 

The Message Data field is comprised of 56-bits, constituting the bulk of the pertinent 

ADS-B data [1]. The first 5-bits of the Message Data field contain the Type Code, which 

identifies the content of the data contained within the remaining 51-bits [1]. Of particular interest 

to this research are the Identification, Airborne Position, Airborne Velocity, and Aircraft 

Operational Status message types given in Table 2-2. 
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Table 2-2: Subset of 1090MHz Extended Squitter Message Formats [1]. 

Type Code Description Altitude Type Navigation Integrity 

Category (NIC) 

1 Identification (Category Set D) N/A N/A 

2 Identification (Category Set C) N/A N/A 

3 Identification (Category Set B) N/A N/A 

4 Identification (Category Set A) N/A N/A 

9 Airborne Position Barometric 11 

10 Airborne Position Barometric 10 

11 Airborne Position Barometric 9,8 

12 Airborne Position Barometric 7 

13 Airborne Position Barometric 6 

14 Airborne Position Barometric 5 

15 Airborne Position Barometric 4 

16 Airborne Position Barometric 3,2 

17 Airborne Position Barometric 1 

18 Airborne Position Barometric 0 

19 Airborne Velocity Either N/A 

20 Airborne Position GNSS 11 

21 Airborne Position GNSS 10 

22 Airborne Position GNSS 0 

31 Aircraft Operational Status N/A N/A 
Note: Type codes 5-8 and 23-30 were intentionally omitted because they do not provide information relevant to 

this application. 

 

2.1.1.2.1 Aircraft Identification Messages 

As indicated in Table 2-2, four separate Type Codes define Aircraft Identification 

message Category Sets A, B, C, and D. Combining the Category Set with the 3-bit Emitter 

Category subfield (bits 6-8 of the Aircraft Identification Message) provides insight into the type 

of vehicle upon which the ADS-B emitter is affixed. The various Category Set/Emitter Category 

combinations are described in Table 2-3 [1]. Note that Category Set D is reserved for future use; 

as such, no specific details are provided. 

The remaining 48-bits in the Aircraft Identification Message provide the flight number, 

aircraft registration number, or other identifying character strings specific to the vehicle upon 

which the emitter is installed [1]. 
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Table 2-3: ADS-B Emitter Category Descriptions [1]. 
 

Value 

Category Set A 

Interpretation 

Category Set B 

Interpretation 

Category Set C 

Interpretation 

0 No ADS-B Emitter Category Information 

1 Light (<15500 lbs.) Glider Surface Vehicle (Emergency) 

2 Small (15500 to 75000 lbs.) Lighter-than-Air Surface Vehicle (Service) 

3 Large (75000 to 300000 lbs.) Parachutist Point Obstacle 

4 High-Vortex Large Aircraft Ultralight/Hang-Glider Cluster Obstacle 

5 Heavy (> 300000 lbs.) Reserved Line Obstacle 

6 High Performance Unmanned Aerial Vehicle Reserved 

7 Rotorcraft Space Vehicle Reserved 

2.1.1.2.2 Airborne Position Messages 

As indicated in Table 2-2, thirteen different Type Codes define a variety of Airborne 

Position messages. The Airborne Position messages provide the transmitting aircraft’s altitude, 

latitude, and longitude expressed with respect to the World Geodetic System 1984 (WGS-84) 

ellipsoid [1].  The Type Code indicates the Radius of Containment (RC) of the horizontal 

navigation error, as well as the source of the altitude data as either barometric or GNSS [1]. A 

cross reference of the Navigation Integrity Category (NIC) expressed in Table 2-2 to the Radius 

of Containment is given in Table 2-4. DO-260B does not specifically define the percent 

probability of containment associated with this RC value; however, DO-260B does indicate that 

GNSS Horizontal Protection Limit (HPL) or Horizontal Integrity Limit (HIL) are acceptable 

sources for the RC value. HPL and HIL values are typically assumed to constitute a 99.999% 

radius of containment, but this is not explicitly stated in DO-260B. 

Table 2-4: Navigation Integrity Category to Radius of Containment Value [1]. 

NIC RC  NIC RC  

0 RC  ≥ 20nmi 6 0.2 ≤ RC < 0.5nmi 

1 8 ≤ RC < 20nmi 7 0.1 ≤ RC < 0.2nmi 

2 4 ≤ RC < 8nmi 8 75m ≤ RC < 0.1nmi 

3 2 ≤ RC < 4nmi 9 25 ≤ RC < 75m 

4 1 ≤ RC < 2nmi 10 7.5 ≤ RC < 25m 

5 0.5 ≤ RC < 1nmi 11 RC < 7.5m 

It must be noted that the vehicle position information transmitted in the Airborne Position 

message is subject to latency. AC 20-165B indicates that the transmitting aircraft must transmit 
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its position within 2.0 seconds of measurement [11]. Additionally, AC 20-165B indicates that the 

transmitted position must be latent by less than 0.6 seconds, and may not be overcompensated by 

more than 0.2 seconds [11]. This implies that if the avionics system in the transmitting aircraft 

cannot transmit its measured position within 0.6 seconds of calculation, then it must extrapolate 

its position forward in time so that the reported position is within the window of +0.2/-0.6 

seconds of the time of transmission. The Radio Technical Commission for Aeronautics (RTCA) 

recommends a latency of less than 0.4 seconds to support future ADS-B applications [11]. 

2.1.1.2.3 Airborne Velocity Message 

The Airborne Velocity message describes the transmitting aircraft’s velocity over the 

ground in a Cartesian north/east frame, the vertical rate, and a measure of the 95% probability 

horizontal velocity error. The horizontal velocity error is referred to as Navigation Accuracy 

Category for Velocity (NACv) and has the interpretation given in Table 2-5. 

Table 2-5: Navigation Accuracy Category for Velocity [1]. 

NACv Horizontal Velocity Uncertainty (95%) 

0 Unknown or ≥ 10 m/s 

1 < 10 m/s 

2 < 3.0 m/s 

3 < 1.0 m/s 

4 < 0.3 m/s 

2.1.1.2.4 Aircraft Operational Status Message 

The Aircraft Operational Status message provides information related to the current 

status of the aircraft [1]. Of interest to this application are the Navigation Accuracy Category for 

Position (NACp) and the Geometric Vertical Accuracy (GVA) fields. 

The NACp field provides a measure of the aircraft’s Estimated Position Uncertainty 

(EPU) expressed as a 95% radial value [1]. That is, EPU defines the radius of a circle, centered 

on the reported position, where the probability of the actual position lying inside the circle is 

95% [1]. Unlike the RC
 provided in the Airborne Position Message, the NACp is clearly defined 
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as a 95th percentile radius of containment. Table 2-6 provides the relationship between NACp 

and EPU. 

Table 2-6: Navigation Accuracy Category for Position [1]. 

NACp EPU (95%) NACp EPU (95%) 

0 EPU ≥ 10 NM 6 EPU < 0.3 NM 

1 EPU < 10 NM 7 EPU < 0.1 NM 

2 EPU < 4 NM 8 EPU < 0.05NM 

3 EPU < 2 NM 9 EPU < 30 m 

4 EPU < 1 NM 10 EPU < 10 m 

5 EPU < 0.5 NM 11 EPU < 3 m 

Similarly, the GVA field describes the one-dimensional, 95% vertical uncertainty as 

described in Table 2-7. 

Table 2-7: Geometric Vertical Accuracy [1]. 

GVA Vertical Uncertainty (95%) 

0 Unknown or > 150 m 

1 ≤ 150 m 

2 ≤ 45 m 

3 Reserved 

2.1.2 Transmit Power 

The minimum RF peak output power requirements for ADS-B transmissions are a 

function of the transponder class. A minimum RF peak power of 70 W is required for Class A0 

and Class B transponders. These low power transponders are installed on ground vehicles and 

aircraft subject to visual flight rules [14]. Class A1 and A2 transponders, used on aircraft subject 

to instrument flight rules, require a minimum peak power of 125 W [1] [14]. Finally, Class A3 

transponders, used on extended capability aircraft operating in Class A airspace, require a 

minimum peak power of 200 W [1]. A maximum peak output power of 500 W is specified for all 

transponder classes [1]. 

2.1.3 Transmission Rates 

Each ADS-B transmitter operating on the network emits spontaneous broadcasts limited 

to a maximum of 6.2 messages per second, as averaged over a 60 second interval [1]. The 
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transmission of each individual message from the ADS-B message set is staggered and broadcast 

at a uniformly distributed random interval [1]. The sparseness of transmissions, along with the 

random/staggered interval, reduces the number of data collisions experienced at the receiver, and 

prevents multiple aircraft from continuously masking one another due to unintended 

transmission synchronization. The uniform distribution parameters for the messages of interest to 

this application are given in Table 2-8 [1]. 

Table 2-8: Uniformly Distributed ADS-B Message Transmission Intervals [1]. 

ADS-B Message Minimum Interval [s] Maximum Interval [s] 

Airborne Position 0.4 0.6 

Airborne Velocity 0.4 0.6 

Operational Status 2.4 2.6 

2.1.4 Receiver Sensitivity 

Like the transmission power described in Section 2.1.2, receiver sensitivity is also a 

function of the transponder class. Class A0 receivers must be capable of detecting and decoding 

ADS-B packets received at -72 dBm [1]. Class A1 and A2 receivers utilize a -79 dBm threshold, 

while Class A3 receivers employ an -84 dBm threshold [1]. 

2.1.5 Minimum Desired Range 

In addition to specifying transmitter power and receiver sensitivity requirements for 

ADS-B, DO-260B also specifies minimum range requirements in which a receiving system is 

expected to reliably receive data from a transmitting aircraft. The minimum desired ranges as a 

function of equipment category are given in Table 2-9. 

Table 2-9: Desired Minimum Range for ADS-B Systems [1]. 

Equipment Category Desired Minimum Range [NM] 

Class A0 10 

Class A1 20 

Class A2 40 

Class A3 120 
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2.1.6 Theoretical ADS-B Range 

The ADS-B ranges given in Section 2.1.5 represent the minimum desired range for 

ADS-B installations. Based on both free space propagation and line-of-sight analysis, ADS-B 

data will theoretically be available beyond these desired operational minimums. This section 

presents an analysis for both free space and line-of-sight propagation to derive the theoretical 

ADS-B operational range. 

2.1.6.1 Theoretical Free Space Propagation 

Assuming RF signal transmissions under the effects of free space propagation, the RF 

signal power at a receiver is given by (2-1) [14]. 

𝑃𝑅 = 𝑃𝑇𝐺 (𝜆4𝜋𝑅)2
 

 

(2-1) 

Where: 𝑃𝑅 = Minimum receiver power.  

 𝑃𝑇 = Transmitter power.  

 𝐺 = Antenna gain.  

 𝜆 = Wavelength. 

 𝑅 = Radial distance in meters. 

Solving (2-1) for the radial distance leads to (2-2) [14]. 

𝑅 = √𝑃𝑇𝑃𝑟  (𝐺𝜆4𝜋) (2-2) 

Assuming an average transmit power of one-half of the peak power described in Section 

2.1.2, a receiver sensitivity of -90dBm (1pW), and an antenna gain of 2.1dBi (1.622) [14], the 

theoretical ADS-B range for a Class A0 transmitter is established in (2-3). Subject to these 

assumptions, the theoretical range for each transmitter class is given in Table 2-10. It should be 

noted that the assumed gain of 2.1dBi is typical of blade style airborne transponder antennas. 

Although the radiation pattern for these antennas is not purely omnidirectional, this research has 

assumed it to be so. This research further assumes that the multiple element antenna arrays 

required for direction finding will have similar gain. 
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𝑅 = √ 351𝑥10−12  [1.622(0.275)4𝜋 ] = 210 𝑘𝑚 = 113.5 𝑁𝑀 (2-3) 

Table 2-10: Theoretical ADS-B Range Based on Free Space Propagation. 

Transmitter 

Class 

Peak Power 

[W] 

Average 

Power [W] 

Range 

[km] 

Range 

[NM] 

A0 70 35 210 115 

A1 & A2 125 75 300 165 

A3 200 100 355 190 

2.1.6.2 Line of Sight 

When operating near the surface of the Earth, the theoretical transmission range 

established through analysis of free space propagation could be limited by the Earth itself. That 

is, the Earth may interfere with direct RF propagation. To ensure that direct RF propagation is 

achievable, the transmitter must have line-of-sight to the receiver. As shown in Figure 2-2, the 

maximum direct line-of-sight distance is achieved when the line connecting the transmitter (P1) 

and the receiver (P2) is tangential to the surface of the Earth. 

Based on the geometry depicted in Figure 2-2, the maximum line-of-sight distance as a 

function of transmitter altitude (h1) and receiver altitude (h2) can be derived using the 

Pythagorean Theorem. This is shown in (2-4) through (2-7). 

𝑑12 = (𝑅𝑚 + ℎ1)2 − 𝑅𝑚2 = 2𝑅𝑚ℎ1 + ℎ12 (2-4) 

Where:  𝑅𝑚 = Mean radius of the Earth. 

𝑑22 = (𝑅𝑚 + ℎ2)2 − 𝑅𝑚2 = 2𝑅𝑚ℎ2 + ℎ22 (2-5) 

𝐿𝑂𝑆 = 𝑑1 + 𝑑2 = √2𝑅𝑚ℎ1 + ℎ12 + √2𝑅𝑚ℎ2 + ℎ22 (2-6) 

Applying the simplifying assumption of ℎ𝑖2 ≪ 2𝑅𝑚ℎ𝑖  ∴ ℎ1 = ℎ2 → 0 to (2-6) results in 

an expression for line-of-sight distance based on aircraft altitudes. This expression is given as 

(2-7).  
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Figure 2-2: Geometry for Line Of Sight Derivation. 

 𝐿𝑂𝑆 = √2𝑅𝑚ℎ1 + √2𝑅𝑚ℎ2 = √2𝑅𝑚(√ℎ1 + √ℎ2) (2-7) 

2.1.6.3 Assumed ADS-B Range 

Figure 2-3 provides a comparison of the theoretical free space propagation range and the 

line of sight distance. The three horizontal black traces indicate the free space propagation range 

for the three transmitter power levels. Likewise, the ensemble of non-linear traces show the 

line-of-sight range as a function of transmitter and receiver altitude.  

This graph demonstrates that line-of-sight is the limiting factor at low altitudes, while 

free space propagation limits the theoretical ADS-B range at higher altitudes. Given this 

observation, the theoretical ADS-B range for purposes of this research is assumed to be the 

minimum of the free space propagation distance and the line-of-sight distance. 

P1

P2

Rm

Rm

Rm

h1

h2

d1

d2
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Figure 2-3: Line-of-Sight as a Function of Transmitter and Receiver Altitude. 

2.1.7 Nominal ADS-B Reported Accuracy 

To gauge the nominal reported accuracy of ADS-B transmissions for use in evaluation of 

this algorithm, a survey of the NACp, NACv, and GVA values from 2,417 unique ADS-B 

capable aircraft was conducted. The hardware consisted of a NooElec USB RTLSDR ADS-B 

receiver, while the software was a locally modified version of the open source Dump1090 Mode 

S decoder. The open source software was modified to decode and record the ICAO, NACp, 

NACv, and GVA values for unique aircraft that were transmitting non-zero accuracy values. 

Once recorded and saved, the data was post processed to determine the mean, median, 

maximum, and minimum NACp, NACv, and GVA values. The survey results are presented as 

Table 2-11. 

 

 



 

46 

Table 2-11: Reported ADS-B Accuracy Statistics. 

Parameter Mean Median Maximum Minimum 

NACp 9.66 10 11 6 

NACv 1.48 1 4 1 
GVA 1.98 2 2 1 

2.2 Radio Frequency Angle of Arrival/Direction Finding 

Angle-of-Arrival, also known as direction finding, is a method of determining the 

direction from which an RF wave originated. Radio navigation, radar, sonar, pseudo-doppler, 

and seismic exploration are but a handful of the applications that rely on high-resolution AOA 

estimation [15]. Given the wide variety of applications dependent on AOA estimation, it should 

come as no surprise that it has been the subject of significant research.  

AOA estimation can be thought of as a far-field plane wave intersecting a uniform linear 

array of antennas [6]. Based on the impinging angle, the signals received at adjacent antennas 

will demonstrate a characteristic phase offset [6]. This phase relationship can then be used to 

estimate the AOA of the received signal [6].  

Early approaches to the AOA estimation problem included Burg’s (1967) maximum 

entropy method and Capon’s (1969) maximum likelihood method [15]. Although widely used, 

these approaches were fundamentally flawed because their models failed to account for additive 

noise present in the received signal [15]. More modern approaches that employ a more robust 

model to account for this noise include: Multiple Signal Classification (MUSIC) [16], Estimation 

of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [15], Non-Circular Unitary 

ESPRIT (NC ESPRIT) [17], Single Value Decomposition ESPRIT (SVD ESPRIT) [18], and 

Matrix Pencil [19].  

Due to the fact that the algorithm described in this paper is simply a consumer of the 

AOA data, and no effort is being made to construct an AOA ADS-B receiver, a detailed 
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exploration of these methods is not provided. The interested reader is encouraged to review the 

referenced documents for more details. 

2.3 Kalman Filter 

The Kalman filter was developed in 1960 by Rudolph E. Kalman and continues to be 

widely used in the areas of navigation, ballistic missile trajectory estimation, and radar/fire 

control [20] [21]. A Kalman filter is an optimal, linear, least squared, estimator that can provide 

valid estimations of the current and future state of a linear dynamic system, even when the exact 

dynamics of the modeled system are unknown [20]. That is, the filter provides an efficient means 

to estimate the state and covariance of a linear dynamic system that is subject to white noise by 

processing measurements that are also subject to white noise [22].  

The symbolic notation defined in Table 2-12 is provided for reference and to aid in the 

description of the equations presented in the remainder of this section. Unless otherwise 

specified, vectors are defined to be column vectors.   

Table 2-12: Notation for Kalman Filter Parameters [22]. 

Symbol Vector Name Size Symbol Matrix Name Dim 𝑘 Discrete time index 1 A State transition matrix n x n 

x System state n  P State error covariance matrix n x n 𝒙̂ Estimate of state n B Input control matrix n x r 

u Control input r Q Process noise covariance matrix r x r 

w Process noise r H Measurement geometry matrix l x n 𝒛̃ Measurement l R Measurement noise covariance matrix l x l 

v Measurement noise l K Kalman Gain matrix n x l 

As previously noted, the Kalman filter seeks to estimate the state and covariance of a 

discrete time process defined by the well-known linear stochastic difference equation given in 

(2-8) [20] [21] [22] [23] [24]. The state estimates are produced through observation of a 

measurement that takes on the form given in (2-9) [20] [21] [22] [23] [24]. The variables wk 

(process noise) and vk (measurement noise) are assumed to be normally distributed, zero mean 
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random variables, with variance Q and R  respectively [20] [21] [22] [23] [24]. An arbitrary 

linear dynamic system, and corresponding measurement mechanism, that satisfies these 

equations can be modeled as shown in Figure 2-4. 

𝒙𝑘 = 𝑨𝒙𝑘−1 + 𝑩𝒖𝑘−1 + 𝒘𝑘−1 (2-8) 

 𝒛̃𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘 (2-9) 

 

 
Figure 2-4: Discrete Time Linear System and Measurement Device [22]. 

A block diagram of the Kalman filter process is provided in Figure 2-5. Note that the 

Kalman filter includes a model of the linear system being estimated (shown in the lower right of 

Figure 2-5) and the input to the system (zk) is the discrete time measured state of the physical 

linear system shown in Figure 2-4. The Kalman filter utilizes feedback to estimate the state of 

the system by generating a prediction of the system state based on the Kalman filter’s system 

model. Feedback is then obtained from the measured state of the physical linear system to correct 

the prediction [20] [21] [22] [23] [24]. Accordingly, the Kalman filter equations fall into two 

categories: prediction (sometimes called time propagation) equations and correction (also known 

as observation update) equations [20] [21] [22] [23] [24]. The prediction equations provide an a 
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priori estimate of the system, while the correction equations incorporate new measurements into 

the a priori estimate, resulting in an improved a posteriori estimate [20]. 

 
Figure 2-5: Discrete Kalman Filter Model [22]. 

The state and covariance estimation equations governing the prediction process are given 

in (2-10) and (2-11); while the state and covariance equations related to the correction process 

are shown in (2-12), (2-13), and (2-14) [20] [21] [22] [23] [24]. A complete derivation of these 

equations is available in [21] and [23]. 

Kalman Filter State and Covariance Prediction Equations 

𝒙̂𝑘− = 𝑨𝒙̂𝑘−1 + 𝑩𝒖𝑘−1 (2-10) 

𝑷𝑘− = 𝑨𝑷𝑘−1𝑨𝑇 + 𝑸 (2-11) 

Kalman Filter State and Covariance Correction Equations 

𝒙̂𝑘 = 𝒙̂𝑘− + 𝑲𝑘(𝒛̃𝑘 − 𝑯𝒙̂𝑘−) (2-12) 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯)𝑷𝑘− (2-13) 

𝑲𝑘 = 𝑷𝑘−𝑯𝑇(𝑯𝑷𝑘−𝑯𝑇 + 𝑹)−1 (2-14) 
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Prior to receiving a measurement, and during times of measurement unavailability, the 

prediction calculations – equations (2-10) and (2-11) – are performed to generate an estimate of 

the a priori state and covariance of the system. Upon receipt of a valid measurement, the 

correction calculations – equations (2-12), (2-13), and (2-14) – are performed. These equations 

determine the difference between the predicted state and the measured state, form a correction 

component in the form of Kalman Gain, K, and update the state and covariance to provide an 

improved a posteriori estimate of the system. 

2.3.1 Extended Kalman Filter 

The first known application of the Kalman filter was trajectory estimation and control of 

the Apollo space project, using what would today be known as an Extended Kalman filter (EKF) 

[22]. The EKF seeks to estimate the state and covariance of a non-linear discrete-time process by 

linearizing the system about the current state estimate [20]. This extension of the linear Kalman 

filter to non-linear applications was recognized by Stanley F. Schmidt while working at the 

NASA Ames Research Center [22]. 

The symbolic notation previously provided in Table 2-12 remains relevant to the EKF, 

with a few minor changes and additions that will be discussed as introduced throughout the 

remainder of this section. 

The EKF seeks to estimate the state and covariance of a non-linear discrete time process 

defined by the stochastic difference equation in (2-15), given a measurement of the form 

expressed in (2-16) [20] [21] [22] [23] [24]. Note that 𝒙𝑘and 𝒛̃𝑘  are now expressed as functions f 

and h respectively. They can no longer be expressed as a system of linear equations because the 

non-linear variables and coefficients are no longer separable. It should be noted that f and h are 

vectors, where each element defines the non-linear equation required to calculate the 
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corresponding state/measurement value. This is expressed in the expanded equation forms of 

(2-15) and (2-16). 

𝒙𝑘 = 𝒇(𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1) ⇒ 
[  
   
𝑥1𝑘𝑥2𝑘...𝑥𝑛𝑘] 

   
 
=

[  
   
𝑓1(𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1)𝑓2(𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1)...𝑓𝑛(𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1)] 

   
 
 (2-15) 

 

𝒛̃𝑘 = 𝒉(𝒙𝑘,𝒗𝑘) ⇒
[  
   
𝑧1𝑘𝑧2𝑘...𝑧𝑛𝑘] 

   
 
=

[  
   
ℎ1(𝒙𝑘, 𝒗𝑘)ℎ2(𝒙𝑘, 𝒗𝑘)...ℎ𝑛(𝒙𝑘, 𝒗𝑘)]  

    (2-16) 

The EKF retains the model and computational process of a Kalman filter by generating 

an a priori estimate, then refining the estimate as measurement data becomes available to 

generate an a posteriori estimate [20]. However, the non-linear nature of the EKF system model 

precludes the use of a system of linear equations expressed in matrix form. To overcome this, the 

estimate is linearized through the calculation of Jacobians. A Jacobian is the partial derivative of 

the non-linear function with respect to each state element [20] [21] [22] [23] [24]. This leads to a 

redefinition of the matrices A and H as shown in (2-17) and (2-18). The expanded notation of 

equation (2-17) is presented to clarify the double indexed i, j notation used here and in other 

Jacobian equations expressed in this section. For completeness, the matrices W and V are 

introduced in (2-19) and (2-20) respectively [20]. These matrices can be used to linearize the 

process and measurement uncertainty. 
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𝑨[𝑖,𝑗] = 𝜕𝒇[𝑖](𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1)𝜕𝒙[𝑗] =
[  
   
   
 𝜕𝑓[1]𝜕𝑥[1]

𝜕𝑓[1]𝜕𝑥[2] . . . 𝜕𝑓[1]𝜕𝑥[𝑛]𝜕𝑓[2]𝜕𝑥[1]
𝜕𝑓[2]𝜕𝑥[2] . . . 𝜕𝑓[2]𝜕𝑥[𝑛]. . . . . .. . . . . .. . . . . .𝜕𝑓[𝑛]𝜕𝑥[1]
𝜕𝑓[𝑛]𝜕𝑥[2] . . . 𝜕𝑓[𝑛]𝜕𝑥[𝑛]] 

   
   
  
 (2-17) 

 𝑯[𝑖,𝑗] = 𝜕𝒉[𝑖](𝒙𝑘, 𝒗𝑘)𝜕𝒙[𝑗]  (2-18) 

 𝑾[𝑖,𝑗] = 𝜕𝒇[𝑖](𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1)𝜕𝒘[𝑗]  (2-19) 

 𝑽[𝑖,𝑗] = 𝜕𝒉[𝑖](𝒙𝑘 , 𝒗𝑘)𝜕𝒗[𝑗]  (2-20) 

Applying the various Jacobian matrices to the Kalman filter equations results in the 

equations governing the prediction process being redefined as shown in (2-21) and (2-22); while 

the equations related to the correction process are redefined in (2-23), (2-24), and (2-25) [20] 

[21] [22] [23] [24]. A more complete derivation of these equations is available in [21] and [23]. 

EKF State and Covariance Prediction Equations 

𝒙̂𝑘− = 𝒇(𝒙̂𝑘−1, 𝒖𝑘−1, 0) (2-21) 

𝑷𝑘− = 𝑨𝑘𝑷𝑘−1𝑨𝑘𝑇 + 𝑾𝑘𝑸[𝑘−1]𝑾𝑘𝑇 (2-22) 

EKF State and Covariance Correction Equations 

𝒙̂𝑘 = 𝒙̂𝑘− + 𝑲𝑘[𝒛̃𝑘 − 𝒉(𝒙̂𝑘−, 0)] (2-23) 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘− (2-24) 

𝑲𝑘 = 𝑷𝑘−𝑯𝑘𝑇(𝑯𝑘𝑷𝑘−𝑯𝑘𝑇 + 𝑽𝑘𝑹𝑘𝑽𝑘𝑇)−1
 (2-25) 
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It is worth noting that the EKF and linear Kalman filter are not mutually exclusive in 

their implementation. It is not necessary to linearize the aspects of the system that are already 

linear just to fit the system into an EKF model. The Kalman filter and EKF can be 

combined/tailored to the specific application such that the EKF equations are applied to the 

non-linear portions of the system, while the standard linear Kalman equations are applied to the 

linear portions [24]. This makes the implementation remarkably flexible. 

2.3.2 Schmidt-Kalman Filter 

In addition to his contributions regarding the EKF, Schmidt made a number of other 

significant contributions to the field of Kalman filtering. One such contribution, known as the 

Schmidt-Kalman filter, seeks to reduce computational complexity of the filter by eliminating 

nuisance variables from state estimation while still taking their uncertainties into account [22] 

[23]. In this context, nuisance variables are those state variables that are of no interest to the 

problem, but must remain in the state vector [22]. Examples of these nuisance variables might 

include measurement biases, non-Gaussian measurement noise, or other parameters that are not 

dynamically coupled to other state variables [22]. That is, the state transition matrix does not link 

these nuisance variables to the states of interest. This method is ideal for accounting for the 

effects of unobservable biases. 

In a Schmidt-Kalman filter design, the nuisance variables are segregated from the 

essential variables and placed last in the state vector as demonstrated in (2-26) [22]. 

𝒙𝑎 = [𝒙𝑒 𝒙𝑛]𝑇 = [𝑥𝑒1 𝑥𝑒2 ⋯ 𝑥𝑒𝑖 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑗]𝑇 (2-26) 

Where: xa = Augmented state vector. 

 xe = Essential system states. 

 xn = Nuisance system states. 
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This segregation is only possible because the nuisance variables are not dynamically 

coupled to the essential states in the system model. This is reflected in (2-27) by the fact that the 

off-diagonal terms are zero [22]. For clarity, it should be noted that (2-27) is a restatement of 

(2-8) with no control input. This partitioning of essential variables from nuisance variables is 

then applied across all Kalman filter matrices. 

𝒙𝑎𝑘 = 𝑨𝑎𝒙𝑎𝑘−1 + 𝒘𝑘−1 = [𝑨𝑒 00 𝑨𝑛] 𝒙𝑎𝑘−1 + 𝒘𝑘−1 (2-27) 

Where: Aa = Augment state transition matrix. 

 Ae = Essential state transition dynamics. 

 An = Uncoupled nuisance state dynamics. 

Because the desire is to reduce computational complexity, the nuisance variable states are 

not estimated, but their influence is considered in the overall filter structure through their effect 

on the covariance matrix via cross correlations between the filter states [22]. To achieve this, a 

sub-optimal Kalman gain is utilized in the system state measurement update equations. This 

sub-optimal gain has the corresponding nuisance variable gains set to 0 [22]; which has the effect 

of holding the nuisance variables states at 0. The optimal Kalman gain is still used in the 

covariance update equations so that the nuisance variables affect the overall system uncertainty 

without directly estimating their state. The optimal partitioned Kalman gain used in the 

covariance update equations is given as (2-28) [22]; while the sub-optimal partitioned Kalman 

gain used in the state update equations in given as (2-29) [22]. Likewise, the sub-optimal state 

update equation is presented as (2-30) [22]; while a modified covariance update equation is 

shown in (2-31) [22]. Note that (2-30) is simply a restatement of (2-12) using the sub-optimal 

Kalman gain. Grewal and Andrews provide a more complete derivation of the Schmidt-Kalman 

filter in [22]. 
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𝑲 = [𝑲𝑒𝑲𝑛] (2-28) 

Where: K = Optimal Kalman gain, computed using (2-14) or (2-25). 

 Ke = Essential state Kalman gain. 

 Kn = Uncoupled nuisance state Kalman gain. 

 𝑲𝑠 = [𝑲𝑒0 ] (2-29) 

Where: Ks = Sub-optimal Kalman gain. 

 Ke = Essential state Kalman gain. 

 Kn = 0. 

 𝒙̂𝑘 = 𝒙̂𝑘− + 𝑲𝑠𝑘(𝒛̃𝑘 − 𝑯𝒙̂𝑘−) (2-30) 

 𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘−(𝑰 − 𝑲𝑘𝑯𝑘)𝑇 + 𝑲𝑘𝑹𝑘𝑲𝑘𝑇 (2-31) 

2.4 Simultaneous Localization and Mapping 

SLAM is an algorithmic process that allows a mobile vehicle to generate a map of the 

environment while simultaneously using the map to determine the location of the vehicle within 

the mapped environment [25]. In a SLAM implementation, both the motion of the vehicle and 

the location of the landmarks are estimated without previous knowledge of their locations [25]. 

An introductory tutorial of SLAM is available in [25], a summary of which is provided here. 

Preliminary notion relative to SLAM is provided in Table 2-13. 

Table 2-13: Notation Applicable to SLAM [25]. 

Symbol Description 𝒖𝑘 Control input at time k 𝒗𝑘 Additive zero mean white noise with covariance R 𝒘𝑘 Additive zero mean white noise with covariance Q 𝒙0 Initial vehicle state vector at time 0 𝒙𝑘 Vehicle state vector at time k 𝒛𝑘 Observation at time k 𝕄 {𝑚1,𝑚2, … ,𝑚𝑛} Complete set of all landmarks 𝕌 {𝑢1, 𝑢2, … , 𝑢𝑘} Complete history of control inputs ℤ {𝑧1, 𝑧2, … , 𝑧𝑘} Complete set of all observations 𝒇(⋅) Vehicle motion model function 𝒉(⋅) Measurement geometry function 𝑨 State transition matrix (Jacobian of 𝒇) 

H Measurement matrix (Jacobian of 𝒉) 
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Expressed in probabilistic terms, SLAM attempts to determine the probability density 

function (PDF) given in (2-32) [25]. This density function describes the joint distribution of the 

vehicle state and landmark locations given the initial vehicle state, all control inputs, and all 

observations [25].  

𝑃(𝒙𝑘 ,𝕄|ℤ𝑘 , 𝕌𝑘 , 𝒙0) (2-32) 

Given the complexity of computing (2-32) for all times k, a recursive solution is essential 

for real-time applications [25]. Assuming the joint probability distribution is known for time 

k - 1, a control input 𝒖𝑘 is provided, and an observation 𝒛̃𝑘 is available, then the joint distribution 

can be determined using Bayes theorem [25]. Prior to applying Bayes theorem, a state transition 

model and an observation model must be defined.  

The state transition model describes the motion of the vehicle, and it is assumed to be a 

Markov process [25]. This allows the next state to be determined using only the previous state 

and the control input 𝒖𝑘, independent of both the map and observations [25]. This is expressed in 

probabilistic terms in (2-33). 

𝑃(𝒙𝑘|𝒙𝑘−1, 𝒖𝑘) (2-33) 

The observation model, given in (2-34), expresses the probability of the observation, zk, 

when the system state and landmark locations are known [25]. 

𝑃(𝒛̃𝑘|𝒙𝑘 ,𝕄) (2-34) 

The SLAM algorithm can now be expressed as a recursive prediction/correction process, 

shown in (2-35) and (2-36), where (2-35) describes the prediction and (2-36) describes the 

correction step [25]. Together, these equations determine the joint distribution for the vehicle 

state and landmark locations based on the set of all observations and control inputs [25]. 

𝑃(𝒙𝑘 ,𝕄|ℤ𝑘−1, 𝕌𝑘, 𝑥0) = ∫𝑃(𝒙𝑘|𝒙𝑘−1, 𝒖𝑘)𝑃(𝒙𝑘−1,𝕄|ℤ𝑘−1, 𝕌𝑘−1, 𝑥0)𝑑𝒙𝑘−1  (2-35) 
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𝑃(𝒙𝑘 ,𝕄|ℤ𝑘−1, 𝕌𝑘, 𝑥0) = 𝑃(𝒛𝑘|𝒙𝑘,𝕄)𝑃(𝒙𝑘 ,𝕄|ℤ𝑘−1, 𝕌𝑘 , 𝑥0)𝑃(𝒛𝑘|ℤ𝑘−1, 𝕌𝑘)  (2-36) 

It is common to express the SLAM problem in terms of a state-space model with additive 

Gaussian noise, then to solve the problem using an EKF [25]. In EKF based solutions, the 

motion model of the vehicle, previously shown in (2-33), can be expressed as given in (2-37); 

and the observation model, shown in (2-34), can be expressed as given in (2-38) [25]. 

𝑃(𝒙𝑘|𝒙𝑘−1, 𝒖𝑘) ⇔ 𝒙𝑘 = 𝒇(𝒙𝑘−1, 𝒖𝑘) + 𝒘𝑘 (2-37) 

𝑃(𝒛𝑘|𝒙𝑘 ,𝕄) ⇔ 𝒛𝑘 = 𝒉(𝒙𝑘,𝕄) + 𝒗𝑘 (2-38) 

The resulting EKF time update equations then take on the familiar form presented in 

(2-39) and (2-40). Similarly, the EKF observation update equations are as given in (2-41) 

through (2-43), noting that (2-41) has been extended from the form given in (2-23) to 

simultaneously consider the vehicle state and landmark locations. 

𝒙̂𝑘− = 𝒇(𝒙̂𝑘−1, 𝒖𝑘) (2-39) 

𝑷𝑘− = 𝑨𝑘𝑷𝑘−1𝑨𝑘𝑇 + 𝑸𝑘 (2-40) 

[ 𝒙̂𝑘𝕄̂𝑘] = [𝒙̂𝑘−𝑇 𝕄̂𝑘−1𝑇]𝑇 + 𝑲𝑘[𝒛̃𝑘 − 𝒉(𝒙̂𝑘−, 𝕄̂𝑘−1)] (2-41) 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘− (2-42) 

𝑲𝑘 = 𝑷𝑘−𝑯𝑘𝑇(𝑯𝑘𝑷𝑘−𝑯𝑘𝑇 + 𝑹𝑘)−1
 (2-43) 

Care was taken with Equation (2-41) to explicitly separate the estimated vehicle state 𝒙̂𝑘 

from the estimate of the landmark locations 𝕄̂𝑘. This was done to show that both estimates are 

determined simultaneously. An alternate expression for the system state could be written that 

combines the vehicle state and landmark locations into a single system state as shown in (2-44). 
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𝒙̂𝑘 = [𝒙̂𝒗𝒌𝑇 𝕄̂𝑘𝑇]𝑇 (2-44) 

Where: 𝒙̂𝑘 = Combined vehicle and landmark state estimate at time k. 

 𝒙̂𝒗𝒌  = Vehicle state estimate at time k. 

 𝕄̂𝑘 = Landmark estimates at time k. 

Using the combined notation of (2-44), the EKF equations would remain unchanged from 

the form presented in Section 2.3.1; however, this may obfuscate the fact that the system is 

simultaneously updating the estimate of both the vehicle and landmark locations. 

In spite of the abundant research conducted on the SLAM algorithm, it is still subject to 

numerous challenges and ongoing research. Three SLAM related challenges are: the size of the 

EKF covariance matrix, data association, and optimistic uncertainty estimates [26] [27]. These 

challenges are summarized in the remaining paragraphs of this section. 

As the vehicle moves through its environment, it encounters new landmarks. Each new 

landmark necessitates an expansion of the system state by two elements – landmark position x 

and y – to facilitate tracking and enhancement of the landmark’s estimated position. The addition 

of two new states to the system results in the covariance matrix growing quadratically [26]. This 

large, ever increasing covariance matrix is typically non-sparse, as the off-diagonal elements 

represent the correlations between different random variables defined in the system [26]. The 

non-sparseness of the matrix limits the computational techniques that can be used to increase the 

efficiency of the calculations involving this matrix.    

With respect to data association, the EKF-SLAM algorithm is particularly sensitive to 

incorrect association of observations to a landmark [25]. That is, applying an observation to the 

wrong landmark can seriously affect the accuracy of the system. Typically, this is overcome by 

proximity evaluation [26]. That is, the algorithm determines which landmark is the most likely 

landmark observed based on its proximity to other known landmarks [26]. Another common 
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technique to ensure correct data association is to withhold a landmark from the map or to 

withhold the measurement until the landmark has been observed a sufficient number of times to 

determine if the observation if of a new landmark or an existing one [26]. 

Huang and Dissanayake noted that a number of researchers have observed inconsistency 

in EKF SLAM implementations where the SLAM algorithm produces optimistic (over 

confident) estimates [27]. Many researchers believe that linearization is the root cause of the 

optimistic estimates, but this has yet to be proven for large scale maps, and continues to be an 

area of ongoing research [27]. 

2.5 Random Variables and Statistical Conversions 

Often when dealing with random variables it becomes necessary to convert from one 

probability level to another within a given distribution, or to express a random variable given in 

one distribution as a random variable in a different distribution. For example, GNSS uncertainty 

is often expressed as a 99.999% radius of containment, but some operations that perform 

calculations on this data require the uncertainty to be expressed as a Gaussian distributed random 

variable. This section derives the process to convert from one Gaussian probability level to 

another, to convert from Gaussian to Rayleigh, and to convert between Rayleigh probability 

levels. For clarity, the notation 𝜎𝐷𝑃will be used when expressing the standard deviation of a 

random variable. The superscript ‘D’ will denote the distribution as either ‘N’ for Normal 

(Gaussian) or ‘R’ for Rayleigh; while the superscript ‘P’ will indicate the probability level. For 

example, 𝜎𝑅95 indicates the standard deviation for a Rayleigh random variable at the 95% 

probability level. 

2.5.1 Gaussian Random Variables 

A Gaussian random variable, often referred to as a Normal random variable, has a 

Probability Density Function (PDF) that forms the well-known “bell-curve” [28]. The Gaussian 
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random variable is often used to characterize physical quantities, and is particularly useful when 

a large sample size is available [28]. The Gaussian distribution is defined by two parameters: the 

mean, μ, and the standard deviation, σ; where -∞ < μ < ∞ and σ > 0 [29]. The notation 

𝑁~(𝜇, 𝜎) is often used to describe a Gaussian distribution. The PDF of a Gaussian random 

variable is given in (2-45) [28] [29]. 

𝑓𝑋(𝑥) = 1√2𝜋𝜎2 𝑒−(𝑥−𝜇)22𝜎2  
 

(2-45) 

Where: 𝜇 = Mean  

 𝜎 = Standard deviation  

 𝜎2 = Variance 

A plot of the PDF of the Gaussian distribution 𝑁~(0, 1) is provided in Figure 2-6. The 

vertical cyan lines denote ± one standard deviation from the mean. As detailed later in this 

section, approximately 68% of all outcomes will fall inside of this band. It is clear from this plot 

that the mean is the most likely outcome – or expected value – of the distribution. It is also 

evident that the mean represents the midpoint of the distribution, with 50% of all possible 

outcomes falling below the mean, and 50% of all possible outcomes falling above the mean. 

Clearly, the expected value, median, and mode of a Gaussian distribution are all equal to the 

mean μ. 

The standard deviation provides an indication of the level of dispersion of the data. Large 

values of σ result in a shorter and wider bell-curve, while smaller values of σ lead to a tall and 

narrow curve [29]. Figure 2-7 shows the effect of the standard deviation on the shape of the 

distribution. 
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Figure 2-6: Gaussian Probability Density Function with μ = 0 and σ = 1. 

 

 

 
Figure 2-7: Comparison of Gaussian Distributions with Varying Standard Deviations. 

The CDF of a Gaussian random variable, expressed in (2-46), does not have a closed 

form solution; therefore, the error function expressed in (2-47) is often used to simplify 

equations involving the CDF of a Normally distributed random variable [28]. 
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𝐹𝑋(𝑥) = ∫ 𝑓𝑋(𝑣)𝑑𝑣 𝑥
−∞ = 1√2𝜋𝜎2 ∫ 𝑒−(𝑣−𝜇)22𝜎2 𝑑𝑣𝑥

−∞  (2-46) 

erf(𝑥) = 2√𝜋 ∫ 𝑒(−𝑣2)𝑑𝑣𝑥
0  (2-47) 

Substituting (2-47) into (2-46) results in an expression of the CDF of a Normal random 

variable in terms of the error function; this result is provided in (2-48). 

𝐹𝑋(𝑥) = 12 [1 + erf (𝑥 − 𝜇𝜎√2 )] (2-48) 

The error function is an odd function; accordingly, it exhibits the property in (2-49) [28]. 

erf(−𝑥) = −erf (𝑥) (2-49) 

Amongst other things, the CDF can be used to determine the percent probability that a 

random value X, drawn from a Gaussian distribution, falls within n standard deviations of the 

mean. That is, the CDF can be used to determine the probability that X falls in the range 

[(𝜇 − 𝑛𝜎), (𝜇 + 𝑛𝜎)]. This assertion is derived in (2-50) and (2-51). Note that the Normal 

distribution is a two-sided function, implying that the contribution from both sides of the y-axis 

must be considered as shown in (2-50). 

𝑃(𝑛) =  𝐹(𝜇 + 𝑛𝜎) − 𝐹(𝜇 − 𝑛𝜎) 

           = 12 [1 + erf (𝜇 + 𝑛𝜎 − 𝜇𝜎√2 )] − 12 [1 + erf (𝜇 − 𝑛𝜎 − 𝜇𝜎√2 )] 
           = 12 [erf ( 𝑛√2) − erf (− 𝑛√2)] 

(2-50) 

Applying (2-49) to (2-50) results in an expression for the probably level as a function of 

n. This is shown in (2-51). 

𝑃(𝑛) =  erf ( 𝑛√2) (2-51) 

The probability level for several common sigma multiples computed using (2-51) are 

given in Table 2-14. This table shows that the probability of a random sample being within 1σ of 
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the mean is approximately 68%, of being within 2σ of the mean is approximately 95.5%, and of 

being within 3σ of the mean is approximately 99.7%. 

Table 2-14: Gaussian Probability Levels for nσ. 

n P [%] n P [%] 

1 68.268949 4 99.993666 

2 95.449974 5 99.999943 

3 99.730020 6 99.999999 

Similarly, the inverse error function can be used to determine the sigma multiple n 

required to reflect a given probability level. The inverse error function is defined to have the 

property shown in (2-52). Applying this property to (2-51) results in (2-53). 

erf−1[erf (𝑥)] = 𝑥 (2-52) 

𝑛 = √2[erf−1(𝑃)] (2-53) 

The sigma multiple n for some common probability levels was determined using (2-53) 

and are given in Table 2-15.  

Table 2-15: Sigma Multiple for Gaussian Probability Levels. 

P [%] n P [%] n 

68.268949 1 97.500000 2.241403 

90.000000 1.644854 99.000000 2.575829 

92.500000 1.780464 99.500000 2.807034 

95.000000 1.959964 99.900000 3.290527 

Table 2-15 indicates that conversion from a 1σ Gaussian random variable to any desired 

probability level can be accomplished through multiplication by the appropriate factor of n. 

Equation (2-54) demonstrates the conversion to express a 1σ Gaussian random variable as a 

Gaussian random variable enclosing 95% of all samples. 

𝜎𝑁95 = 1.959964𝜎𝑁68 (2-54) 

 

2.5.2 Rayleigh Random Variables 

The Rayleigh random variable is common in physical phenomena and various 

applications where random variables are summed, such as: noise theory, processing radar 
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returns, wireless communication, ultrasound, and wind modelling [28] [30]. The Rayleigh 

distribution is completely defined by a single parameter α, known as the scale factor [28] [30]. 

The general form of the Rayleigh PDF and CDF are given in (2-55) and (2-56) respectively, 

where α > 0 [28]. 

𝑓𝑋(𝑥) = ( 𝑥𝛼2) 𝑒− 𝑥22𝛼2 (2-55) 

𝐹𝑋(𝑥) = ∫ 𝑓𝑋(𝑣)𝑑𝑣 =𝑥
0 1 − 𝑒− 𝑥22𝛼2 (2-56) 

Figure 2-8 provides a plot of the Rayleigh PDF with α = 1. It is clear from this plot that 

the mode of the distribution is α, and that the one sided nature of the distribution causes the mean 

and median to differ from the mode. (2-57) and (2-58) define the relationship between the mode, 

mean, and median of the Rayleigh distribution, while (2-59) defines the relationship between the 

mode and variance of a Rayleigh distribution [30]. 

 

 
Figure 2-8: Rayleigh Probability Density Function with α = 1. 
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𝑥̅ = 𝛼√𝜋2 (2-57) 

Where: 𝑥̅ = Mean of a Rayleigh distribution. 

 𝛼 = Scale factor = Mode of a Rayleigh distribution. 

 𝑥̃ = 𝛼√2ln (2) (2-58) 

Where: 𝑥̃ = Median of a Rayleigh distribution. 

 𝑣𝑎𝑟𝑅 = 4 − 𝑝𝑖2 𝛼2 (2-59) 

Where: 𝑣𝑎𝑟𝑅 = Variance of a Rayleigh distribution. 

Similar to σ in the Gaussian case, the scale factor α affects the height and width of a 

Rayleigh distribution. The Rayleigh PDF for several values of α are shown in Figure 2-9. 

 
Figure 2-9: Comparison of Rayleigh Distributions with Varying Scale Factors. 

If the Rayleigh distribution is formed as the sum of zero mean, independent Gaussian 

random variables X and Y, with standard deviations σx and σy, such that σx =σy =σ, then α =σ 

and 𝑍 = √𝑋2 + 𝑌2 is a Rayleigh random variable with the PDF and CDF shown in (2-60) and 

(2-61) respectively [28].  
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𝑓𝑋(𝑥) = ( 𝑥𝜎2) 𝑒− 𝑥22𝜎2 (2-60) 

𝐹𝑋(𝑥) = ∫ 𝑓𝑋(𝑣)𝑑𝑣 =𝑥
0 1 − 𝑒− 𝑥22𝜎2 (2-61) 

Inherent in this method of constructing a Rayleigh distribution is that fact that the mode 

α, is equal to the standard deviation σ, of the underlying Gaussian distribution. This allows for 

convenient conversion between a Rayleigh distribution and it constituent Gaussian distribution. 

The remainder of this section (and this document) assumes that Rayleigh random variables are 

the sum of zero mean Gaussian random variables. On this note, a point of clarification is in order 

regarding the notion for the standard deviation of a Rayleigh random variable introduced in 

Section 2.5. The notation 𝜎𝑅 refers to the standard deviation of the underlying Gaussian 

distribution used to construct the Rayleigh distribution, it does not refer to the square root of the 

variance expressed in (2-59). This liberty with the notation allows convenient conversion 

between a Rayleigh distribution and its constituent Gaussian distribution. 

To demonstrate the relationship between the Gaussian distribution and the corresponding 

Rayleigh distribution, Figure 2-10 provides a scatter plot of 10,000 Rayleigh distributed random 

(X,Y) pairs that were constructed as the sum of Gaussian random variables. In this sample, the 

standard deviation of the underlying Gaussian distribution was 1. This plot shows the radial 

nature of the distribution, with the red circle denoting the underlying Gaussian 1σ containment 

level. The Gaussian 1σ containment level encloses approximately 39% of possible Rayleigh 

outcomes.  

As in the Gaussian case, the Rayleigh CDF can be used to determine the exact percent 

probability that a random value X , drawn from a Rayleigh distribution, will fall within n 

standard deviations of the mean. In this case, the standard deviation refers to the underlying 
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Gaussian standard deviation. Unlike the Gaussian case, the Rayleigh distribution is one-sided, as 

evident in Figure 2-8. Equation (2-62) derives the equation for this process, and Table 2-16 

shows the probability level for several values of 𝑛𝜎𝑁68 as computed using (2-62).  

𝑃(𝑛) =  𝐹(𝑛𝜎𝑁68) = 1 − 𝑒−𝑛2𝜎22𝜎2 = 1 − 𝑒−𝑛22  (2-62) 

 

Table 2-16: Rayleigh Probability Levels for nσ. 𝑛𝜎𝑁68 PR [%] 𝑛𝜎𝑁68 PR [%] 1𝜎𝑁68 39.346934 4𝜎𝑁68 99.966454 2𝜎𝑁68 86.466472 5𝜎𝑁68 99.999627 3𝜎𝑁68 98.889100 6𝜎𝑁68 99.999998 

 
Figure 2-10: Rayleigh Random Variable Scatter Plot with σ = 1. 

As in the Normal distribution case, the inverse CDF, given in (2-63), can be used to 

determine the Gaussian sigma multiple required to enclose a given Rayleigh probability level. 

The sigma multiple, n, for some common Rayleigh probability levels was determined using 

(2-63) and are given in Table 2-17.  
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𝐹𝑋(𝑛𝜎𝑁68) = 1 − 𝑒−𝑛22 => 𝑒−𝑛22 = 1 − 𝐹𝑋 =>  𝑛 = √−2 ln(1 − 𝐹𝑋) (2-63) 

 

Table 2-17: Sigma Multiple for Rayleigh Probability Levels. 

PR [%] 𝑛𝜎𝑁68 PR [%] 𝑛𝜎𝑁68 

68.268949 1.515173𝜎𝑁68 97.500000 2.716203𝜎𝑁68 

90.000000 2.145966𝜎𝑁68 99.000000 3.034854𝜎𝑁68 

92.500000 2.276079𝜎𝑁68 99.500000 3.255247𝜎𝑁68 

95.000000 2.447747𝜎𝑁68 99.900000 3.716922𝜎𝑁68 

As noted throughout the present section, a Rayleigh distribution can be formed as the 

sum of Gaussian distributed random variables. Table 2-14 indicates that a 1σ Gaussian random 

variable represents roughly 68% of all possible Gaussian outcomes, while Table 2-16 indicates 

that the 1σ containment level for the corresponding Rayleigh distribution represents roughly 

39% of all possible Rayleigh outcomes. This relationship is presented in (2-64) 

𝜎𝑅39 = 1.0𝜎𝑁68 (2-64) 

Conversion from the underlying Gaussian distribution to a Rayleigh distribution with a 

specified containment level can be achieved by selecting the appropriate constant, n, from Table 

2-16 or Table 2-17. For example, the conversion from a 1σ normally distributed random variable 

to a 95% Rayleigh random variable is given in (2-65). Figure 2-11 provides a Rayleigh scatter 

plot and probability circle enclosing 95% of all samples where the radius of the probability circle 

was determined from using (2-65). 

𝜎𝑅95 = 2.447747𝜎𝑁68 (2-65) 

Conversion between Rayleigh containment levels can be achieved by adjusting the given 

containment value to the 1σ Gaussian level, then converting to the desired Rayleigh containment 

level. For example, (2-66) demonstrates the process to convert from a Rayleigh 90% 

containment level to a Rayleigh 99% containment level using the values available from Table 

2-17. 
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𝜎𝑅90 = 2.145966𝜎𝑁68 ⇒ 𝜎𝑁68 = 𝜎𝑅902.145966 (2-66) 

𝜎𝑅99 = 3.034854(𝜎𝑁68) ⇒ 3.034854( 𝜎𝑅902.145966) ⇒ 3.0348542.145966𝜎𝑅90  

The preceding analysis concerning Rayleigh conversions could have also been performed 

using the Chi-Squared distribution as an intermediate step in the conversion process. This is 

because the Rayleigh distribution is a special case of the Chi distribution with two degrees of 

freedom. As a special case of the Chi distribution, by extension, the Rayleigh distribution is also 

a special case of the Chi-Squared distribution. Frank van Diggelen performed such an analysis in 

[31] and derived conversion constants equivalent to those presented in Table 2-17. 

 
Figure 2-11: Rayleigh Random Variable Scatter Plot with 95% Containment Circle. 
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2.6 Earth Models and the Equations of Geodesic Paths and Positioning 

The purpose of most navigation applications is to compute a position referenced to the 

Earth’s surface in order to control a vehicle’s movement from one position to another [32]. 

Fundamental to this concept is determining the vehicle’s position relative to the Earth. This 

requires a model of the Earth to be developed that allows the vehicle’s position to be expressed 

with respect to the model [32]. This modeling process is known as geodesy. 

The Earth’s true shape is that of an irregular oblate spheroid. That is, the Earth is nearly 

spherical in shape, but is slightly wider along the equator than it is along its axis of rotation, with 

the equatorial radius being 0.3% longer than the polar radius [32]. Furthermore, the surface of 

the Earth is irregularly shaped, making hyper-precise modeling impractical for most applications. 

Therefore, the surface is approximated to a regular shape, then fit to mean sea level as illustrated 

in Figure 2-12 [32]. 

 
Figure 2-12: Ellipsoid fit to the Earth’s Surface. 
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Some geodesic techniques consider the oblate nature of the spheroid, while others assume 

a strictly spherical representation. The choice of model largely depends on the required accuracy 

and computational capacity of the system performing the navigation calculations. In either case, 

two of the main challenges associated with geodesy are the calculation of the direct (sometimes 

referred to as forward) and inverse problems.  

The direct problem seeks to determine a new position given a starting position, initial 

direction of travel, and distance of travel along the surface of the Earth. Conversely, the inverse 

problem seeks to determine the initial direction of travel and the shortest surface distance 

between two known positions. In each of these cases, the distance is expressed in terms of the 

great circle distance.  

Geometrically, a great circle is a plane that passes through the center of the sphere (or 

spheroid) and cuts the surface into a circle (or oval in the case of a spheroid) [33]. Practically, the 

great circle distance is the shortest path between two points along the surface of the sphere, 

rather than through the sphere. As such, for any two non-antipodal points on the sphere, there is a 

single unique great circle, with the shorter path between the points being defined as the great 

circle distance. 

The remainder of this section provides an overview of two geodesic Earth models: the 

spherical Earth model and the ellipsoidal model.  

2.6.1 Spherical Earth Model 

The spherical Earth model disregards the flattening of the Earth and assumes that the 

Earth is a perfect sphere. This spherical assumption is less accurate than ellipsoidal models, but 

requires little more than an understanding of spherical trigonometry or vector algebra to perform 

calculations over the surface. 
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2.6.1.1 Coordinate Frames and Transformations 

There are numerous coordinate frames that can be used to perform spherical Earth 

analysis, with the choice of coordinate system being dependent on the type of analysis being 

performed. This section describes some of the fundamental coordinate systems and establishes 

the relationship between them. 

2.6.1.1.1 Earth Centered, Earth Fixed Coordinate Frame 

Geocentric coordinate systems are often utilized in the spherical Earth model. A 

geocentric coordinate system is a Cartesian system with the origin at the center of the spherical 

model. The Z-axis is aligned with the polar axis, while the X-Y plane is situated in  the 

equatorial plane [34]. The X-axis is aligned and fixed to the prime meridian; while the Y-axis 

completes the right handed coordinate system [34]. This rotating coordinate system is often 

referred to as Earth Centered, Earth Fixed (ECEF). An example of a spherical Earth model and 

the associated geocentric ECEF coordinate system are presented in Figure 2-13. 

 
Figure 2-13: Spherical Earth Model and Geocentric Coordinate Frame. 
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2.6.1.1.2 Geographic Coordinates 

Positions relative to the spherical Earth model can be expressed directly in the Cartesian 

ECEF frame, but are often expressed in terms of geographical latitude-longitude coordinates. 

Geocentric latitude, denoted as 𝜑 in Figure 2-13, is the vertical angle measured up from the 

equatorial plane to the point of interest on or above the sphere. The usual convention is that 

latitude is measured as positive in the northern hemisphere. This angle differs from the polar 

angle used in a traditional spherical coordinate systems because it is measured up from the X-Y 

plane rather than down from the Z-axis. Longitude, denoted λ, is equivalent to the azimuth angle 

in a traditional spherical system, and is measured in the equatorial plane from the X-axis (prime 

meridian) to the point of interest. Historically, longitude is positive to the east of the prime 

meridian.  

2.6.1.1.3 Local Geodetic Coordinate Systems 

A local geodetic coordinate frame, also known as a local level navigation frame or local 

tangent plane, is a coordinate system with an arbitrary origin that is typically coincident with the 

center of mass of the host vehicle [32]. The axes of the coordinate frame are often aligned with 

the cardinal directions, and with the Z-axis normal to the surface [32]. Two of the most common 

local geodetic frames are the North, East, Down (NED) frame and the East, North, Up (ENU) 

frame [32]. 

In the NED frame, the x-axis is aligned to North, the y-axis is aligned to East, and the 

z-axis points down to the center of the Earth to form an orthogonal right-handed coordinate 

system [32]. Alternatively, the ENU frame has the x-axis aligned to East, the y-axis aligned to 

North, and the z-axis pointing up and normal to the sphere to complete the right handed 

coordinate system [32]. Examples of the NED and ENU coordinate frames are given in Figure 

2-14 and Figure 2-15 respectively. 
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Figure 2-14: North, East, Down Local Geodetic Coordinate Frame. 

 

 

 
Figure 2-15: East, North, Up Local Geodetic Coordinate Frame. 
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2.6.1.1.4 Earth Centered, Earth Fixed to Geographic Coordinate Frame Transformation 

Transforming from ECEF coordinates to geographical coordinates closely resembles 

Cartesian to spherical conversions and can easily be derived from Figure 2-13 as shown in (2-67) 

and (2-68). The use of a four quadrant arctangent function is recommended to prevent quadrant 

ambiguity. 

𝑠𝑖𝑛 (𝜑) = 𝑧𝑅 ⇒ 𝜑 = 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑧𝑅) (2-67) 

Where: 𝜑 = Geocentric latitude  

 𝑅 = Spherical radius of the Earth   

 𝑡𝑎𝑛( 𝜆) = 𝑦𝑥 ⇒ 𝜆 = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑦𝑥) (2-68) 

Where: 𝜆 = Longitude  

Likewise, conversion from geographical to ECEF coordinates can also be derived directly 

from Figure 2-13. This conversion is provided in (2-69) through (2-72). 

𝑟 = (𝑅)𝑐𝑜𝑠 (𝜑) (2-69) 

𝑥 = (𝑟)𝑐𝑜𝑠(𝜆) ⇒ (𝑅) 𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝜆) (2-70) 

𝑦 = (𝑟) 𝑠𝑖𝑛(𝜆) ⇒ (𝑅) 𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛(𝜆) (2-71) 

𝑧 = (𝑅)𝑠𝑖𝑛 (𝜑) (2-72) 

The fundamental relationship between the geographical and ECEF coordinate systems 

enable spherical Earth calculations to be performed using either. The geographical coordinate 

system most readily lends itself to spherical trigonometric analysis; whereas, a vector approach is 

most commonly employed for analysis in the ECEF system.   

2.6.1.1.5 Earth Centered, Earth Fixed to Local Geodetic Transformations 

Conversion from ECEF to a local geodetic coordinate frame can be accomplished 

through the use of a coordinate conversion matrix, sometimes called a rotation matrix. The 

coordinate conversion matrix is an orthogonal matrix that is a function of the latitude and 
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longitude of the origin of the local geodetic coordinate frame [32]. Once established, the 

coordinate conversion matrix is multiplied by the ECEF position vector, as measured from the 

local geodetic coordinate frame’s origin to the position of interest. This operation simultaneously 

rotates and translates the position vector from the ECEF frame to the local geodetic frame. The 

conversion from ECEF to NED is expressed in (2-73) [32]; while (2-74) gives the conversion 

from ECEF to ENU [35]. The interested reader is directed to APPENDIX B and APPENDIX C 

for derivations of these coordinate conversion matrices.  

𝒓𝑁𝐸𝐷 = 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 ∆𝒓𝐸𝐶𝐸𝐹 (2-73) ⇒𝒓𝑁𝐸𝐷 = 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 (𝒓𝐸𝐶𝐸𝐹 − 𝒓𝑜)  

⇒ 𝒓𝑁𝐸𝐷 = [𝑟𝑁𝑟𝐸𝑟𝐷] = [−𝑠𝑖𝑛(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜) − 𝑠𝑖𝑛(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝑐𝑜𝑠(𝜑𝑜)− 𝑠𝑖𝑛(𝜆𝑜) 𝑐𝑜𝑠(𝜆𝑜) 0−𝑐𝑜𝑠(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜) − 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) −𝑠𝑖𝑛(𝜑𝑜)] [∆𝑟𝑥∆𝑟𝑦∆𝑟𝑧]  

Where: 𝒓𝑁𝐸𝐷 = Position of interest expressed in the NED frame.  

 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷  = Coordinate conversion matrix from ECEF to NED.  

 ∆𝒓𝐸𝐶𝐸𝐹 = ECEF vector from NED origin to position of interest. 

 

 𝜑𝑜 = Latitude of the NED frame’s origin.  

 𝜆𝑜 = Longitude of the NED frame’s origin. 

 𝒓𝐸𝐶𝐸𝐹 = Position of interest in ECEF coordinates. 

 𝒓𝑜 = Origin of the NED frame in ECEF coordinates. 

 𝒓𝐸𝑁𝑈 = 𝑪𝐸𝐶𝐸𝐹𝐸𝑁𝑈 ∆𝒓𝐸𝐶𝐸𝐹 (2-74) ⇒𝒓𝐸𝑁𝑈 = 𝑪𝐸𝐶𝐸𝐹𝐸𝑁𝑈 (𝒓𝐸𝐶𝐸𝐹 − 𝒓𝑜)  

⇒ 𝒓𝐸𝑁𝑈 = [𝑟𝐸𝑟𝑁𝑟𝑈] = [ − 𝑠𝑖𝑛(𝜆𝑜) 𝑐𝑜𝑠(𝜆𝑜) 0− 𝑐𝑜𝑠(𝜆𝑜) 𝑠𝑖𝑛(𝜑𝑜) − 𝑠𝑖𝑛(𝜆𝑜) 𝑠𝑖𝑛(𝜑𝑜) 𝑐𝑜𝑠(𝜑𝑜)𝑐𝑜𝑠(𝜆𝑜) 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜑𝑜)] [∆𝑟𝑥∆𝑟𝑦∆𝑟𝑧]  

Where: 𝒓𝐸𝑁𝑈 = Position of interest expressed in the NED frame.  

 𝑪𝐸𝐶𝐸𝐹𝐸𝑁𝑈  = Coordinate conversion matrix from ECEF to NED.  

As an orthogonal matrix, the coordinate conversion matrix exhibits the well-known 

properties given in (2-75) and (2-76). 
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𝑪𝑪𝑇 = 𝑪𝑇𝑪 = 𝑰 (2-75) 

𝑪𝑇 = 𝑪−1 (2-76) 

As a result, algebraic manipulation of (2-73) or (2-74) can be used to establish the 

coordinate conversion matrix required to perform the conversion from the local geodetic 

coordinate frame back to ECEF. This derivation, given in (2-77), highlights that the transpose of 

the coordinate conversion matrix is used to perform the opposite conversion. This result is 

extended to the ENU rotation in (2-78). 

𝒓𝑁𝐸𝐷 = 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 ∆𝒓𝐸𝐶𝐸𝐹 ⇒∆𝒓𝐸𝐶𝐸𝐹 = (𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 )−1(𝒓𝑁𝐸𝐷) 

⇒𝒓𝐸𝐶𝐸𝐹 = (𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 )𝑇(𝒓𝑁𝐸𝐷 + 𝒓𝑜) 

∴ 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹 = (𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 )𝑇 

(2-77) 

 𝒓𝐸𝐶𝐸𝐹 = (𝑪𝐸𝐶𝐸𝐹𝐸𝑁𝑈 )𝑇𝒓𝐸𝑁𝑈 + 𝒓𝑜 (2-78) 

The coordinate conversion techniques presented in this section thus far have been 

expressed in terms of position conversions. It is equally valid to utilize coordinate conversion 

matrices to transform velocity vectors. In this case, it is not necessary to perform the translation 

between coordinate frame origins because velocity vectors do not represent a physical location. 

Accordingly, velocity conversion from ECEF to NED is simply the product of the rotation 

matrix and the velocity vector as presented in (2-79). 

𝒓̇𝑁𝐸𝐷 = 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 𝒓̇𝐸𝐶𝐸𝐹 (2-79) 

Where: 𝒓̇𝑁𝐸𝐷 = Velocity expressed in the NED frame.  

 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷  = Coordinate conversion matrix from ECEF to NED. 
 

 𝒓̇𝐸𝐶𝐸𝐹 = Velocity expressed in ECEF coordinates. 

Coordinate conversion matrices can also be used to rotate covariance matrices from one 

coordinate frame to another; however, these rotations do not follow the paradigm for position or 
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velocity rotation because doing so would violate the scaling and summation properties of 

variances. Consequently, an equation of the form of (2-80) is used to mechanize the rotation of a 

covariance matrix [29]. Additional rationale for this equation is provided in APPENDIX D.     

𝑷𝑁𝐸𝐷 = (𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 )(𝑷𝐸𝐶𝐸𝐹)(𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 )𝑇 (2-80) 

Where: PNED = Resulting rotated 3 x 3 covariance matrix in the NED frame.  

 𝑷𝐸𝐶𝐸𝐹 = 3 x 3 covariance matrix expressed in the ECEF frame. 
 

 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷  = Coordinate conversion matrix from ECEF to NED. 

2.6.1.2 Spherical Trigonometric Analysis of the Spherical Earth Model 

Spherical Earth geodesic problems expressed in the geographical coordinate system are 

most easily solved using spherical trigonometric analysis. The remainder of this subsection 

provides an overview of the spherical law of cosines, then presents the solutions to the geodesic 

direct, geodesic inverse, great circle intersection, and angle of elevation problems in terms of 

spherical trigonometric relationships.  

2.6.1.2.1 Spherical Law of Cosines 

The solutions to most spherical problems can be found using the various forms of the 

spherical law cosines. Given the long history and rich application of the spherical law of cosines, 

a derivation has not been included here; however, a full derivation can be found in chapter 1 of 

W.M. Smart’s work in [33]. For the sake of completeness, a simple restatement of the purpose 

and relevant permutations of the spherical law of cosines is provided in the remainder of this 

subsection. 

The spherical laws of sines and cosines define a relationship between the sides and angles 

of an arbitrary spherical triangle, like the one shown in Figure 2-16. The spherical law of sines is 

expressed in (2-81), while the various permutations of the spherical law of cosines for sides are 

given in (2-82) through (2-84). Finally, the spherical law of cosines for angles is expressed in 

(2-85) through (2-87). 
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Figure 2-16: Arbitrary Spherical Triangle. 

 

𝑠𝑖𝑛(𝑎)𝑠𝑖𝑛(𝐴) = 𝑠𝑖𝑛(𝑏)𝑠𝑖𝑛(𝐵) = 𝑠𝑖𝑛(𝑐)𝑠𝑖𝑛(𝐶) (2-81) 

𝑐𝑜𝑠(𝑎) = 𝑐𝑜𝑠(𝑏) 𝑐𝑜𝑠(𝑐) + 𝑠𝑖𝑛(𝑏) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐴) (2-82) 

𝑐𝑜𝑠(𝑏) = 𝑐𝑜𝑠(𝑐) 𝑐𝑜𝑠(𝑎) + 𝑠𝑖𝑛(𝑐) 𝑠𝑖𝑛(𝑎) 𝑐𝑜𝑠(𝐵) (2-83) 

𝑐𝑜𝑠(𝑐) = 𝑐𝑜𝑠(𝑎) 𝑐𝑜𝑠(𝑏) + 𝑠𝑖𝑛(𝑎) 𝑠𝑖𝑛(𝑏) 𝑐𝑜𝑠(𝐶) (2-84) 

𝑐𝑜𝑠(𝐴) = 𝑠𝑖𝑛(𝐵) 𝑠𝑖𝑛(𝐶) 𝑐𝑜𝑠(𝑎) − 𝑐𝑜𝑠(𝐵) 𝑐𝑜𝑠 (𝐶) (2-85) 

𝑐𝑜𝑠(𝐵) = 𝑠𝑖𝑛(𝐶) 𝑠𝑖𝑛(𝐴) 𝑐𝑜𝑠(𝑏) − 𝑐𝑜𝑠(𝐶) 𝑐𝑜𝑠(𝐴) (2-86) 

𝑐𝑜𝑠(𝐶) = 𝑠𝑖𝑛(𝐴) 𝑠𝑖𝑛(𝐵) 𝑐𝑜𝑠(𝑐) − 𝑐𝑜𝑠(𝐴) 𝑐𝑜𝑠(𝐵) (2-87) 

A set of noteworthy and useful corollaries to (2-82) through (2-84) allow an adjacent 

angle for a given side to be determined. Two such corollary equations exist for each form of the 

spherical law of cosines for sides, for a total of six corollary equations. For the sake of brevity, 

only the two relevant equations are presented here as (2-88) and (2-89). 

𝑠𝑖𝑛(𝑏) 𝑐𝑜𝑠(𝐴) = 𝑐𝑜𝑠(𝑎) 𝑠𝑖𝑛(𝑐) − 𝑠𝑖𝑛(𝑎)𝑐𝑜𝑠(𝑐) 𝑐𝑜𝑠 (𝐵) (2-88) 

𝑠𝑖𝑛(𝑎) 𝑐𝑜𝑠(𝐵) = 𝑐𝑜𝑠(𝑏) 𝑠𝑖𝑛(𝑐) − 𝑠𝑖𝑛(𝑏) 𝑐𝑜𝑠 (𝑐)𝑐𝑜𝑠 (𝐴) (2-89) 
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W.M. Smart provides a derivation for the two corollary equations to determine the 

adjacent angles B and C of side a [33], one of which was given as (2-89). APPENDIX E expands 

this derivation to determine the adjacent angle A of side b as shown in (2-88). 

Having established the fundamental spherical trigonometric equations in the present 

section, the remainder of Section 2.6.1 describes their application as related to navigation. 

2.6.1.2.2 Spherical Navigation Triangle 

For navigation purposes, a spherical triangle is defined by three vertices located on the 

surface of the sphere. One of the vertices is fixed at the North Pole; while the two remaining 

vertices represent the endpoints of a navigation leg [35]. Typically, the spatial relationship 

between the two endpoints is the focus of analysis. An example of an arbitrary navigation 

spherical triangle is provided as Figure 2-17, where the points P and Q represent the endpoints of 

the navigation leg, and the red line denotes the great circle path between them.  

From Figure 2-17, it is evident that the great circle distance is related to the geocentric 

angle θ by the classic relationship shown in (2-90). 

𝑠 = 𝑅𝜃 (2-90) 

Where: 𝑠 = Great circle surface distance.  

 𝑅 = Radius of the sphere (Earth). 
 

 𝜃 = Angle subtended by the great circle arc (geocentric angle). 
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Figure 2-17: Spherical Navigation Triangle. 

Likewise, the great circle distance from N to P is related to the co-latitude of P, and the 

great circle distance from N to Q is related to the co-latitude of Q in the same manner that θ is 

related to the great circle distance from P to Q. In some applications, the radius of the sphere is 

assumed to be unity, allowing the navigation calculations to be performed in terms of angular 

distances rather than surface distances. Once the problem has been solved in terms of angular 

distance, equation (2-90) can be used to express the result in terms of surface distance. 

As discussed in Section 2.6.1.1.2, latitude is measured up from the equatorial plane; 

however, the spherical navigation triangle makes use of the corresponding polar angle, measured 

down from the Z-axis. This corresponding polar angle is known as the co-latitude; where the 

co-latitude is defined as the complimentary angle to the latitude (90° − 𝜑). A minor alteration to 

the formal definition of the spherical law of cosines can be made to allow the use of latitude 
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directly, rather than co-latitude. This is done by replacing each trigonometric function that 

requires co-latitude with the appropriate latitude substitution listed in Table 2-18. 

Table 2-18: Trigonometric Co-Function Substitutions for the Law of Cosines. 

Function in terms of Co-Latitude Function in terms of Latitude 𝑠𝑖𝑛(𝜋 2⁄ − 𝜑) 𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝜋 2⁄ − 𝜑) 𝑠𝑖𝑛(𝜑) 𝑡𝑎𝑛(𝜋 2⁄ − 𝜑) 𝑐𝑜𝑡(𝜑) 

The spherical laws of sines and cosines expressed in terms of the spherical navigation 

triangle, and in terms of latitudes in lieu of co-latitudes, are given as (2-91) through (2-99). 

𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜆𝑄 − 𝜆𝑃) = 𝑐𝑜𝑠 (𝜑𝑄)𝑠𝑖𝑛(𝛹𝑃𝑄) = 𝑐𝑜𝑠 (𝜑𝑃)−𝑠𝑖𝑛(𝛹𝑄𝑃) (2-91) 

𝑐𝑜𝑠(𝜃) = 𝑠𝑖𝑛(𝜑𝑄) 𝑠𝑖𝑛(𝜑𝑃) + 𝑐𝑜𝑠(𝜑𝑄) 𝑐𝑜𝑠(𝜑𝑃) 𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) (2-92) 

𝑠𝑖𝑛(𝜑𝑄) = 𝑠𝑖𝑛(𝜑𝑃) 𝑐𝑜𝑠(𝜃) + 𝑐𝑜𝑠 (𝜑𝑃) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝛹𝑃𝑄) (2-93) 

𝑠𝑖𝑛(𝜑𝑃) = 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜑𝑄) + 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 (𝜑𝑄) 𝑐𝑜𝑠(𝛹𝑄𝑃) (2-94) 

𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) = −𝑠𝑖𝑛(𝛹𝑃𝑄) 𝑠𝑖𝑛(𝛹𝑄𝑃) 𝑐𝑜𝑠(𝜃) − 𝑐𝑜𝑠(𝛹𝑃𝑄) 𝑐𝑜𝑠 (𝛹𝑄𝑃) (2-95) 

𝑐𝑜𝑠(𝛹𝑃𝑄) = −𝑠𝑖𝑛(𝛹𝑄𝑃) 𝑠𝑖𝑛(𝜆𝑄 − 𝜆𝑃) 𝑠𝑖𝑛(𝜑𝑄) − 𝑐𝑜𝑠(𝛹𝑄𝑃) 𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) (2-96) 

𝑐𝑜𝑠(𝛹𝑄𝑃) = 𝑠𝑖𝑛(𝜆𝑄 − 𝜆𝑃) 𝑠𝑖𝑛(𝛹𝑃𝑄) 𝑠𝑖𝑛(𝜑𝑃) − 𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) 𝑐𝑜𝑠(𝛹𝑃𝑄) (2-97) 

𝑐𝑜𝑠 (𝜑𝑄) 𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) = 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜑𝑃) − 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜑𝑃) 𝑐𝑜𝑠 (𝛹𝑃𝑄) (2-98) 

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝛹𝑃𝑄) = 𝑠𝑖𝑛(𝜑𝑄) 𝑐𝑜𝑠 (𝜑𝑃) − 𝑐𝑜𝑠 (𝜑𝑄) 𝑠𝑖𝑛(𝜑𝑃) 𝑐𝑜𝑠 (𝜆𝑄 − 𝜆𝑃) (2-99) 

2.6.1.2.3 Spherical Geodesic Direct Problem 

In terms of the spherical navigation triangle presented as Figure 2-17, the direct problem 

seeks to determine the position Q(φQ, λQ), given the position P(φP, λP), the initial azimuth from 

P to Q (denoted ΨPQ), and the geocentric angle θ between P and Q. This is accomplished by 

determining the latitude and longitude of Q independently, with each being calculated via 

application of the spherical laws of sines and cosines. 



 

83 

2.6.1.2.3.1 Computing Spherical Geodesic Latitude 

Solving for the latitude of point Q (φQ) in the spherical direct problem requires 

application of equation (2-93). Because latitude values are in the range of [−𝜋 2⁄ , 𝜋 2⁄ ], 
application of the arcsine function will not result in quadrant ambiguity, resulting in an 

unambiguous solution [35]. 

2.6.1.2.3.2 Computing Spherical Geodesic Longitude 

Owing to the fact that none of the modified spherical law of cosines equations isolate the 

endpoint longitude, the longitude of the end point is calculated as the sum of the starting 

longitude and the longitude delta determined from the modified spherical law of cosines 

equations. However, care must be taken because the range of longitude values is (−𝜋, 𝜋]; 
therefore, use of a four quadrant arctangent function is necessary to prevent quadrant ambiguity 

[35]. To that end, the solution for the longitude value in the direct problem requires an 

expression for both the sin and cos values of the longitude delta. To determine the sin of the 

longitude delta, the spherical law of sines, expressed in (2-91) is applied. This is shown in (2-100) 

[35].  

𝑠𝑖𝑛(𝜆𝑄 − 𝜆𝑃) = 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝛹𝑃𝑄)𝑐𝑜𝑠 (𝜑𝑄)  (2-100) 

An expression for 𝑐𝑜𝑠(𝜆𝑞 − 𝜆𝑝) can be determined by rearranging the alternate form of 

the law of cosines previously given in (2-98). This is given in (2-101). 

𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) = 𝑐𝑜𝑠(𝜃) cos(𝜑𝑃) − 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜑𝑃) cos(𝛹𝑃𝑄)cos(𝜑𝑄)  (2-101) 

Finally, the change in longitude can be determined as given in (2-102) [35]. 

𝑡𝑎𝑛(𝜆𝑄 − 𝜆𝑃) = 𝑠𝑖𝑛(𝜆𝑄 − 𝜆𝑃)𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) = 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝛹𝑃𝑄)𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜑𝑃) − 𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜑𝑃) 𝑐𝑜𝑠 (𝛹𝑃𝑄) (2-102) 
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It is possible that the result of these calculations may fall outside of the range of valid 

longitude (−𝜋, 𝜋] [35]. This is easily remedied by taking advantage of the periodic nature of 

trigonometric functions and adding/subtracting 2π as required to bring the result back into the 

desired range [35].  

It is also interesting to note that the final solution depends only on the given input 

parameters, and does not require a chaining of results to compute the longitude. That is, 

longitude can be computed independently from latitude using only the given inputs, without the 

need to generate intermediate results. 

2.6.1.2.4 Spherical Geodesic Inverse Problem 

With respect to the spherical navigation triangle shown in Figure 2-17, the inverse 

problem is used to determine the geocentric angle θ, and the initial azimuth ΨPQ, given P(φP, λP) 

and Q(φQ, λQ). Some applications of the inverse problem also determine the angle of arrival into 

point Q, denoted ΨQP, but the current discussion will omit this derivation due to its similarity to 

the initial azimuth. Again, the solution to the problem requires two independent calculations, the 

first determines the great circle distance and the second determines the departure azimuth.  

2.6.1.2.4.1 Computing Spherical Great Circle Distance 

Determining the great circle distance from point P to point Q once again involves 

application of the modified spherical law of cosines. In this calculation, the goal is to find the 

geocentric angle θ given P(φP, λP) and Q(φQ, λQ), which can be accomplished through 

application of (2-92). Once the geocentric angle is resolved, the surface distance is easily 

determined by (2-90). Because the range of the resulting angle θ is [0, π], the resulting great 

circle distance is an unambiguous solution. 

Historically, the spherical law of cosines equation has been considered numerically 

ill-conditioned for small values of θ, and was not recommended for implementation [35]. This 
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occurs because the derivative of cos(θ) approaches zero as the function value approaches ±1. 

That is, changes in the angular input argument near the local minima or maxima result in 

progressively smaller changes to the function value, which could be truncated or rounded off by 

the calculating system [35]. In the event that the application is required to compute small 

distances, the equivalent alternative function shown in (2-103), called the haversine equation, 

can be used to overcome this computational constraint. A complete derivation of the haversine 

solution is provided in APPENDIX F. 

ℎ𝑎𝑣(𝜃) = ℎ𝑎𝑣(𝜑𝑃 − 𝜑𝑄) + 𝑐𝑜𝑠(𝜑𝑃) 𝑐𝑜𝑠(𝜑𝑄)ℎ𝑎𝑣(𝜆𝑄 − 𝜆𝑃) (2-103) 

Where: ℎ𝑎𝑣(𝜃) = 𝑠𝑖𝑛2 (𝜃2) = 1 − 𝑐𝑜𝑠(𝜃)2   

2.6.1.2.4.2 Computing Spherical Departure Azimuth 

The range of the departure azimuth is (−𝜋, 𝜋], which again necessitates the use of a 

four-quadrant arctangent function to resolve quadrant ambiguities. An expression for the sin of 

ΨPQ can be determined through application of the spherical law of sines given in (2-91). This is 

restated in the desired form in (2-104) 

𝑠𝑖𝑛(𝛹𝑃𝑄) = 𝑐𝑜𝑠(𝜑𝑄) 𝑠𝑖𝑛(𝜆𝑄 − 𝜆𝑃)𝑠𝑖𝑛(𝜃)  (2-104) 

The expression for cos of ΨPQ is determined by algebraic manipulation of the corollary 

expression to the spherical law of cosines for sides given in (2-99). This is given in the desired 

form as (2-105).  

𝑐𝑜𝑠(𝛹𝑃𝑄) = 𝑠𝑖𝑛(𝜑𝑄) cos(𝜑𝑃) − cos(𝜑𝑄) 𝑠𝑖𝑛(𝜑𝑃) cos(𝜆𝑄 − 𝜆𝑃)𝑠𝑖𝑛(𝜃)  (2-105) 

Applying the expressions for sin and cos to the tangent function results in the desired 

expression for determining the departure azimuth as presented in (2-106). 
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𝑡𝑎𝑛(𝛹𝑃𝑄) = 𝑠𝑖𝑛 (𝛹𝑃𝑄)𝑐𝑜𝑠 (𝛹𝑃𝑄) = 𝑐𝑜𝑠(𝜑𝑄) 𝑠𝑖𝑛(𝜆𝑄 − 𝜆𝑃)𝑠𝑖𝑛(𝜑𝑄) 𝑐𝑜𝑠(𝜑𝑃) − 𝑐𝑜𝑠(𝜑𝑄) 𝑠𝑖𝑛(𝜑𝑃) 𝑐𝑜𝑠(𝜆𝑄 − 𝜆𝑃) (2-106) 

2.6.1.2.5 Spherical Great Circle Intersection 

The spherical great circle intersection problem is a higher-order algorithm that seeks to 

determine the intersection of two radials; where each radial is defined by its starting point and 

direction of travel. The intersection problem is considered a higher-order algorithm because it 

requires the application of both fundamental geodetic equations: forward and inverse.  

Figure 2-18 presents the taxonomy of the spherical intersection problem, and will serve 

as a useful reference for the remainder of the present discussion. In terms of Figure 2-18, the 

goal of the spherical intersection problem is to determine R(φR, λR) given: P(φP, λP), Q(φQ, λQ), 

the azimuth from P to R (ΨPR), and the azimuth from Q to R (ΨQR) [36]. 

The point of intersection, R(φR, λR), can be found by solving the spherical direct problem 

detailed in Section 2.6.1.2.3 [36]. The inputs to the direct equations are the point P(φP, λP), the 

azimuth from P to R (ΨPR), and the geocentric angle from P to R (θPR). Point P and azimuth ΨPR 

are given as inputs to the intersection problem; however, the geocentric angle θPR must be 

computed using the (2-87) instance of the spherical law of cosines before a solution to the direct 

problem can be determined. This is expressed in terms of Figure 2-18 in (2-107). Equations 

(2-108) through (2-110) define the parameters α, β, and γ of (2-107), where γ is an application 

of (2-85) [36]. 
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Figure 2-18: Taxonomy of Spherical Intersection Problem. 

 

𝑐𝑜𝑠(𝛽) = 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝜃𝑃𝑅) − 𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝛽) (2-107) 

⇒ 𝜃𝑃𝑅 = cos−1 [𝑐𝑜𝑠(𝛽) + 𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛾) ]  

 𝛼 = 𝛹𝑃𝑄 − 𝛹𝑃𝑅 
(2-108) 

Where: 𝛼 = Interior angle at point P, limited to the range (-π, π). 

 𝛹𝑃𝑄 = Azimuth from P to Q, computed using spherical inverse. 
 

 𝛹𝑃𝑅 = Azimuth from P to R, given as input. 

 𝛽 = 𝛹𝑄𝑅 − 𝛹𝑄𝑃 
(2-109) 

Where: 𝛽 = Interior angle at point Q, limited to the range (-π, π). 

 𝛹𝑄𝑅 = Azimuth from Q to R, given as input. 
 

 𝛹𝑄𝑃 = Azimuth from Q to P, computed using spherical inverse. 

 𝛾 = 𝑐𝑜𝑠−1[𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝜃𝑃𝑄) − 𝑐𝑜𝑠 (𝛼)𝑐𝑜𝑠 (𝛽)] (2-110) 

Where: 𝛾 = Interior angle at point R, limited to the range (-π, π).  

 𝜃𝑃𝑄 = Geocentric angle from P to Q, computed with spherical inverse.  

ΨQP 

ΨPR 

N
orth

ZECEF

XECEF

YECEF

Prime

Meridian
North

P(φP, λP) 

R(φR, λR) 

α 

β

γ 

ΨPQ 

Q(φQ, λQ) 

ΨQR 



 

88 

Care must be taken when computing the angles α and β to ensure that the resulting angles 

describe the internal angles of the spherical triangle. As such, (2-108) and (2-109) may require 

adjustment by ±2π  to ensure that the correct angles are used in the calculation. 

As a higher-order algorithm, there may be cases when the result is undefined or 

ambiguous. For example, as the angles α and β both approach zero, the point of intersection 

converges to the line connecting P and Q. In this case, any point on the line PQ could be 

considered a point of intersection, resulting in an infinite number of solutions. Similarly, if the 

vectors originating at point P and Q are parallel, or nearly so, then either no intersection will 

exist, or the resulting intersection would require multiple circumnavigations of the sphere. Both 

cases should be considered invalid. 

2.6.1.2.6 Spherical Altitude Given Elevation Angle 

The equations presented in this section seek to determine the height of point P (hP) above 

the reference ellipsoid, given the three-dimensional position of point Q and the angle of elevation 

β between the two points. The nomenclature for this geometric relationship is presented in 

Figure 2-19. As shown in (2-111), the planar law of sines can be used to solve for many of the 

indicated parameters. 

𝑠𝑖𝑛(𝜃)𝑑𝑃𝑄 = 𝑠𝑖𝑛(𝛾)𝑅𝑚 + ℎ𝑄 = 𝑠𝑖𝑛(𝜂)𝑅𝑚 + ℎ𝑃 (2-111) 

Where: 𝜃 = Geocentric angle between points P and Q.   

 𝑅𝑚 = Mean radius of the Earth.  

 𝑑𝑃𝑄 = Slant range distance from P to Q. 

  ℎ𝑃 = Height (altitude) of point P above the sphere. 

 ℎ𝑄 = Height (altitude) of point Q above the sphere. 

 𝛾 = 
𝜋2 + 𝛽 

  𝛽 = Angle of elevation. 

 𝜂 = 𝜋 − 𝛾 − 𝜃 ⇒ 𝜋2 − 𝛽 − 𝜃  
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Figure 2-19: Nomenclature for Angle of Elevation Relationships. 

Substituting for the angles γ and η in terms of β leads to the restatement of (2-111) given 

in (2-112). 

𝑠𝑖𝑛(𝜃)𝑑 = 𝑐𝑜𝑠 (𝛽)𝑅𝑚 + ℎ𝑄 = 𝑐𝑜𝑠 (𝛽 + 𝜃)𝑅𝑚 + ℎ𝑃  (2-112) 

Algebraic manipulation of (2-112) allows the height of point P to be determined from the 

angle of elevation, two dimensional position of P, and three-dimensional position of Q. This is 

shown in (2-113). Note that the lateral position of each point is required to compute the 

geocentric angle using the spherical inverse calculations described in Section 2.6.1.2.4.1. 

ℎ𝑃 = (𝑅𝑚 + ℎ𝑄)𝑐𝑜𝑠 (𝛽 + 𝜃)𝑐𝑜𝑠 (𝛽) − 𝑅𝑚 (2-113) 

2.6.2 Ellipsoidal Earth Model 

A more accurate model of the Earth can be formed by rotating an ellipse about its minor 

axis. This process forms an ellipsoid of revolution known as an oblate spheroid, and it serves as 

the basis for ellipsoidal Earth models used in most navigation systems [32]. An oblate spheroid is 

defined by two parameters, the semi-major axis a (also known as the equatorial radius R0), and 
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the semi-minor axis b (also known as the polar radius RP). These defining parameters are 

illustrated in Figure 2-20 [34]. The oblate spheroid demonstrates rotational symmetry about the 

semi-minor axis and mirror symmetry about the semi-major axis [32].  

Given the values of the semi-major and semi-minor axes, the flattening and eccentricity 

of the spheroid can be expressed as shown in (2-114) and (2-115) respectively [34]. 

𝑓 = 𝑎 − 𝑏𝑎 = 1 − 𝑏𝑎 (2-114) 

𝑒2 = 𝑎2 − 𝑏2𝑎2  (2-115) 

 

 
Figure 2-20: Ellipsoid Defining Parameters. 

The semi-minor axis, flattening, and eccentricity are related by (2-116) and (2-117) [34]. 

𝑒2 = 2𝑓 − 𝑓2 (2-116) 

√1 − 𝑒2 = 1 − 𝑓 = 𝑏𝑎 (2-117) 

Using these relationships, the ellipsoid can be completely defined using the set of 

parameters a and b, or a and f, or a and e [34].  
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b
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Like the spherical Earth model, an ECEF coordinate frame can be used to define a unique 

position on or above the ellipsoid. Also similar to the spherical Earth model, positions can be 

expressed in terms of latitude-longitude pairs, albeit they are geodetic rather than geocentric.  

Geodetic longitude is measured in the same manner as geocentric longitude, making the 

two values equivalent. However, unlike the spherical Earth model, geodetic latitude values are 

not necessarily measured from the origin of the coordinate system. Geodetic latitude, Φ, is 

measured as the angle of intersection between the normal to the ellipsoid and the semi-major 

axis. This is illustrated in Figure 2-21 [32]. 

 
Figure 2-21: Geocentric Versus Geodetic Latitude. 

In terms of ECEF coordinates, the geocentric latitude can be found using (2-118) [32]. 

𝑡𝑎𝑛(𝜑) = 𝑧𝑃𝛽𝑃 = 𝑧𝑃√(𝑥𝑃)2 + (𝑦𝑃)2 (2-118) 
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The relationship between geocentric and geodetic latitude is given in (2-119). A complete 

derivation of this relationship is provided by Groves in [32]. 

𝑡𝑎𝑛(𝜑) = (1 − 𝑒2)𝑡𝑎𝑛 (𝛷) (2-119) 

The radius of curvature of the ellipse for north-south motion, known as the meridian 

radius of curvature, is a function of geodetic latitude and is given in (2-120) [32]. 

𝑅𝑁 = 𝑅0(1 − 𝑒2)(1 − 𝑒2 𝑠𝑖𝑛2 𝛷)3 2⁄  (2-120) 

Likewise, the radius of curvature of the ellipse for east-west motion, known as the 

transverse radius of curvature, is also a function of geodetic latitude as shown in (2-121) [32]. 

𝑅𝐸 = 𝑅0√1 − 𝑒2 𝑠𝑖𝑛2 𝛷 (2-121) 

2.6.2.1 Geodetic to Earth Centered, Earth Fixed Transformations 

Using similar geometry to the spherical Earth case, and the radius of curvature to account 

for the variable radius, (2-122) through (2-124) can be used to convert geodetic 

latitude-longitude coordinates into ECEF coordinates. A full derivation of this process is again 

provided by Groves in [32]. 

𝑥 = 𝑅𝐸 𝑐𝑜𝑠(𝛷) 𝑐𝑜𝑠(𝜆) (2-122) 

𝑦 = 𝑅𝐸 𝑐𝑜𝑠(𝛷) 𝑠𝑖𝑛(𝜆) (2-123) 

𝑧 = 𝑅𝐸(1 − 𝑒2) 𝑠𝑖𝑛(𝛷) (2-124) 

2.6.2.2 Geodetic to Earth Centered, Earth Fixed Transformations 

Conversion from ECEF to geodetic latitude requires iteration over (2-125). An iterative 

process is required because the transverse radius of curvature, RE, used in the equation is itself a 

function of the resulting latitude [32]. 

𝑡𝑎𝑛(𝛷) = 𝑧(𝑅𝐸)√𝑥2 + 𝑦2[(1 − 𝑒2)𝑅𝐸] (2-125) 
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Conversion from ECEF to geodetic longitude mirrors the conversion from ECEF to 

geocentric longitude given in Section 2.6.1. For completeness, the equation is restated as (2-126). 

𝑡𝑎𝑛(𝜆) = 𝑦𝑥 (2-126) 

2.6.2.3 Earth Centered, Earth Fixed to Local Geodetic Transformations 

Conversion from ECEF to a local geodetic coordinate frame (NED or ENU) is 

accomplished in the same manner as the spherical transformation previously described in Section 

2.6.1.1.5. For brevity, the equations are not repeated here. One noteworthy physical difference 

between spherical local geodetic coordinate frames and ellipsoidal local geodetic frames is that 

in the ellipsoidal case, the local frame is normal to the geodetic latitude and is tangent to the 

ellipse, but is not necessarily normal to the geocentric latitude that projects from the center of the 

Earth. This result is evident in Figure 2-21. 

2.6.2.4 Ellipsoidal Direct and Inverse Problems 

Solving the ellipsoidal direct and inverse problems is equivalent to solving the navigation 

triangle presented for the spherical case. However, the solution is complicated by the fact that the 

radius of the ellipse is not constant, rather it varies with latitude as noted in (2-120) and (2-121).  

In his seminal work of 1975, Thaddeus Vincenty presented a compact iterative solution 

of the main geodesic problems that was suitable for implementation on desktop calculators of the 

time [37]. In most cases, the solutions required fewer than four iterations to converge with an 

error less than 0.5mm [37]. However, for nearly antipodal points, Vincenty’s algorithm 

demonstrated slow convergence, or a complete failure to converge [38]. Despite this constraint, 

Vincenty’s work was instrumental to the field of navigation because it provided a 

computationally efficient mechanism to solve geodesic problems over the ellipse; as such, it 

remains in wide use today. For briefness, the 12 equations comprising the direct solution and the 
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9 equations for the inverse solution have not been included here. The interested reader is 

encouraged to consult Vincenty’s original work cited as [37]. 

A more modern solution to the main geodesic problems was developed by Karney in 

[38]. The Karney solution expanded Vincenty’s work by increasing the accuracy of the solution 

to the order of 15 nanometers, while demonstrating convergence for all points, even those that 

are antipodal [38]. The increased accuracy and guaranteed convergence results in a more 

complex algorithm than the Vincenty solution; which, in turn, implies that the Karney algorithm 

requires more computation time than the Vincenty algorithm. Given the complexity of the 

Karney algorithm, the equations are not presented here, the interested reader is referred to [38]. 

2.6.2.5 WGS-84 Coordinate Reference System 

The World Geodetic System 1984 (WGS84) was originally developed by the Defense 

Mapping Agency as the standard for U.S. military applications [32]. Its widespread use by GNSS 

and INS resulted in its global adoption as the standard for navigation systems [32].  

WGS84 defines an ellipsoid and corresponding ECEF coordinate frame oriented at the 

Earth’s center of mass [32].  WGS84 then serves as a model of the Earth’s geoid for mapping 

and navigation applications [32]. The ellipsoid is defined by the equatorial radius and flattening; 

allowing the remaining parameters to be derived using (2-116) and (2-117). Table 2-19 lists the 

defining WGS84 parameters along with the resulting derived values. 

Table 2-19: Defining Parameters for the WGS84 Ellipsoid [32]. 

Parameter WGS84 Value 

Equatorial Radius, R0 6,378,137.0 m 

Polar Radius, RP 6,356,752.31425 m 

Flattening, f 1/298.257223563 

Eccentricity, e 0.0818191908425 

Because WGS84 is defined as an ellipsoid of revolution, the entirety of the preceding 

ellipsoid Earth model discussion, and corresponding geodesic solutions, are applicable to the 
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WGS84 model, provided that the WGS84 defining parameters are utilized in the calculations. 

Likewise, any other ellipsoidal Earth model can be utilized by substituting the corresponding 

defining parameters. As a special case, the ellipsoidal equations can be used to solve the 

spherical Earth geodesic problems by letting R0 = RP. However, this is not recommended given 

the additional computational burden associated with the ellipsoidal equations. 

2.6.3 Accuracy of the Spherical Earth Approximation 

In an effort to empirically evaluate the accuracy of spherical Earth calculations, the great 

circle distance between numerous predefined points was computed using both spherical 

trigonometry and the Karney algorithm. As discussed in the introduction of Section 2.6, the 

irregular shape of the surface of the Earth makes accurate modeling of the Earth quite 

challenging. Therefore, the surface of the Earth is approximated to a regular shape and fit to the 

surface. As such, the accuracy of any geodesic calculation is limited to the accuracy of the 

corresponding Earth model. Bearing this constraint in mind, the assumption is made that the 

WGS84 Earth model is the de facto best fit and represents truth. References to accuracy 

expressed in the following analysis are measured with respect to the WGS84 ellipsoid using the 

Karney algorithm as truth. 

Prior to analyzing the spherical Earth model for accuracy, a suitable value for the radius 

of the Earth must be determined. Obvious choices include the equatorial radius R0 or the polar 

radius RP. The choice of R0 would result in very accurate measurements in the area of the 

equator, but would overestimate calculations performed away from the equatorial plane. 

Likewise, the choice of RP would result in accurate north-south calculations, but would 

underestimate east-west calculations. Therefore, the most desirable value of the spherical Earth 

radius would be the value that minimizes the mean square of the error. This value is the mean of 
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the semi-axes, given as (2-127) [35]. Applying WGS84 parameters leads to a mean radius of 

6,371,008.7714 m. This value was used in the present analysis. 

𝑅𝑚 = 2𝑎 + 𝑏3 = (1 − 13𝑓)𝑎 (2-127) 

The difference between the spherical earth results and Karney results were plotted in 

terms of both the absolute error and relative error as shown in Figure 2-22 and Figure 2-23. 

These figures were generated by fixing the starting point at (latitude, longitude) = (0°, 0°), while 

the endpoint latitude was swept from -90° to +90° in steps of 2°, and the endpoint longitude was 

swept from -180° to +180° in 2° increments. 

Figure 2-22 indicates that the maximum absolute error of 18.94 km occurred at the 

endpoint (48°, 0°). As expected, the errors are symmetric about the equatorial plane and the 

prime meridian.  

Figure 2-23 illustrates that the maximum relative error of 0.561% occurred at the 

endpoint (2°, 0°). Again, the errors are symmetric about the equatorial plane and the prime 

meridian. This maximum relative error can be rationalized as the worst case relative error 

between the meridian radius of curvature at the starting latitude and the mean spherical radius; 

where the meridian radius of curvature was defined in (2-120). The worst case error occurs when 

the starting point is located at the equator and the direction of travel is north or south along a 

meridian. This relative error expression is given as (2-128). 

%𝐸𝑟𝑟 = 100 (∆𝑅𝑅𝑁) = 100(|𝑅𝑁 − 𝑅𝑚|𝑅𝑁 ) (2-128) 

Solving for Rm and RN using WGS84 parameters, and assuming a 0° latitude in the RN 

calculation, leads to (2-129). This result confirms the empirical relative error analysis shown in 

Figure 2-23. 
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%𝐸𝑟𝑟 = 100(|6,335,439.327 − 6,371,008.771|6,335,439.327 ) ≅ 0.561% (2-129) 

This relative error is the direct result of the spherical Earth model’s failure to consider the 

non-constant radius, or flattening of the Earth. In spite of the relative error, the elementary nature 

of the spherical Earth model is well suited for navigation applications, especially those where an 

error of this magnitude can be tolerated or otherwise compensated for. 
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Figure 2-22: Absolute Error between the Spherical Earth Model and Karney Algorithm  

Over the range from (0°, 0°) to ([-90°, 90°], [-180°, 180°]). 
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Figure 2-23: Relative Error between the Spherical Earth Model and Karney Algorithm 

Over the range from (0°, 0°) to ([-90°, 90°], [-180°, 180°]).
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3.0 REVIEW OF LITERATURE 

Although both ADS-B and direction finding are well understood and deployed in 

commercial products, there is relatively little existing research directly related to geolocation 

from ADS-B AOA measurements. Because a comprehensive review of ADS-B and its 

capabilities as defined by industry specifications was provided in Section 2.1, no additional 

literature was reviewed for this topic. Direction finding has a long history with a plethora of 

publications on the subject; however, few are directly related to ADS-B AOA. Because a 

summary of AOA technology was provided in Section 2.2, the AOA topics contained in this 

literature review are limited to those that relate to ADS-B AOA. In addition to ADS-B AOA, a 

few works relative to determining the uncertainty in geolocation based on direction finding will 

be reviewed, as these are somewhat applicable to the current research. Additionally, an 

assessment of three patents that were discovered whose embodiments contain aspects similar to 

the current research will be provided. Finally, a review of a published method to determine 

vehicle orientation from AOA/AOE measurements is included. 

3.1 Angle-of-Arrival of Automatic Dependent Surveillance – Broadcast Messages 

This section provides a review of pertinent publications that have investigated the 

practicality of determining the AOA of ADS-B transmissions. The most prominent research in 

this area was performed by Christoph Reck and his team, who contributed at least six papers on 

the topic. In addition to Reck, Faragher produced one publication on the subject of ADS-B AOA. 

The works by these authors are reviewed in the subsequent sub-sections. 

3.1.1 Christoph Reck, et al. 

Christoph Reck and his team of researchers have thoroughly studied the modern AOA 

techniques, reviewed in Section 2.2, with the specific intent to determine which algorithms are 

best suited for determining the AOA of ADS-B transmissions. In Reck’s works, the ADS-B is 



 

101 

received by precisely positioned ground based antenna arrays, consisting of either 6 or 8 

elements [2][3][4][5][6][7].  

Reck’s team determined that the Matrix Pencil approach of AOA estimation was the least 

accurate due to its susceptibility to outliers; while the traditional ESPRIT and SVD ESPRIT 

algorithms were the most robust in the presence of imperfect hardware, carrier offsets, and noise 

[5]. Reck theorizes that a RMSE on the order of 0.3° is achievable using ESPRIT, and 

empirically demonstrated a RMSE of 1.0° using SVD ESPRIT when tested against 14,479 

random ADS-B position samples generated from a random sample of ADS-B capable aircraft 

[5]. In these experiments, Reck compared the AOA of the received ADS-B transmission with the 

expected AOA; where the expected AOA was computed based on the receiving antenna location 

and the ADS-B position report [7]. This research demonstrated that the RMSE in AOA 

estimation remained at or below 1.0° for all ADS-B message types except for Types 17 and 18, 

where the RMSE increased to the order of 3° [6]. This result is justified by noting that ADS-B 

message Types 17 and 18 represent position transmissions that correspond to a radius of 

containment of 8 NM and 20 NM respectively (refer to Section 2.1.1.2.2). In these cases, the 

error in the reported ADS-B position resulted in an erroneous AOA estimate; thereby, increasing 

the perceived AOA error. 

Reck’s team postulated that because the contribution to the AOA error induced by ADS-

B position error should decrease with increasing distance, the RMSE of the resulting AOA 

measurements should decrease over increasing distance as well [6]. Based on this theory, Reck et 

al., repeated their experiment, but limited the ADS-B data set to those signals that were Type 13 

or less (RC < 0.5 NM), were more than 30 km away, and whose angle of incidence on the 

antenna array was in the range 45° to 135° [6]. Reck’s results were nearly piecewise linear, 
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showing a RMSE of 0.9° for targets out to 75 km, a RMSE of 0.63° for targets at 135 km, and a 

RMSE below 0.4° for targets beyond 150 km [6].  

One final embodiment of Reck’s research utilized a dedicated ADS-B capable target 

aircraft to validate the accuracy of AOA estimates [7]. The target aircraft contained a highly 

accurate navigation sensor suite capable of estimating its position to the sub-meter accuracy level 

[7]. This ensured that the observed AOA errors were a function of the AOA measurement sensor 

and not induced by errors present in the transmitting aircraft’s position report. This experiment 

empirically demonstrated that an AOA RMSE on the order of 0.66° could be achieved for 

aircraft operating at a variety of ranges [7]. This empirical result is likely the best indicator of the 

level of accuracy that can be realized from the ADS-B AOA estimation process using a 

stationary 8-element planar antenna array. 

3.1.2 Ramsey Faragher, et al. 

Faragher’s research sought to develop an ADS-B AOA receiver to detect malicious 

attacks on the ADS-B network that may include the spoofing of GNSS, or the ‘ghosting’ of 

ADS-B data [8]. Ghosting is generally considered the process of simulating non-existent ADS-B 

aircraft with the intent of inspiring the collision avoidance algorithms in real aircraft to take 

evasive maneuvers to avoid the threat. Oftentimes the goal is to force the real aircraft into a flight 

path deviation, which may include an intentional crash into the ground.  

Faragher primarily focused on phase interferometry techniques to determine the AOA of 

received ADS-B signals. To this end, he utilized a dual channel software defined radio with a 

two antenna system [8]. Each antenna was a simple two element array, with quarter wavelength 

diploes, and a basic ground plane reflector [8]. Faragher conducted two sub-experiments, one 

with the antennas separated by 14 cm (half wavelength), and the other with the antennas 

separated by 1.6 meters [8].  
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Faragher found that the setup was sensitive to errors in the antenna spacing, antenna 

orientation, and phase offset between receiver channels [8]. To compensate for these 

sensitivities, he developed a Bayesian estimation algorithm to characterize these errors [8]. 

Following calibration using the Bayesian estimator, Faragher observed an accuracy of 6° when 

14 cm antenna spacing was used, and an accuracy of 1° when 1.6 meter antenna spacing was 

utilized [8].  

3.2 Uncertainty in Direction Finding Implementations 

Once operational, the algorithm will generate an estimate of the vehicle’s position and the 

associated uncertainty in that estimate. However, a preliminary position uncertainty estimate is 

required to initialize the filter. To that end, two approaches for developing an estimate of lateral 

position uncertainty for AOA derived positions are reviewed.  

3.2.1 Airborne Direction Finding – The Theory of Navigation Errors 

Ancker published an approach to determine the uncertainty in a lateral position 

determined from the intersection multiple of angular bearings, where the bearings are measured 

with respect to airborne direction-finding stations [39]. These airborne direction-finding stations 

were assumed to have their own positional uncertainty, which increases the uncertainty in the 

resulting position fix [39]. 

Ancker used the variance of the AOA measurement, along with knowledge of each 

direction-finding station’s position and variance, to construct a PDF that represents the statistical 

distribution of position errors generated when multiple lines of bearing are used to determine a 

position fix [39]. Generation of the PDF shown in (3-1) is subject to the following assumptions 

[39]: 

1. The DF bearings have zero mean, normally distributed errors. 

2. The DF bearings have small errors. 
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3. The navigation error is small compared to the range from the DF station to the position fix. 

4. Navigation errors at each DF station are independent. 

5. Navigation errors at each DF station have a circular frequency function. 

𝑓(𝐿𝑗) = 1√2𝜋 √𝜎𝜓𝑗2 𝐷𝑗2 + 𝜎𝑗2 𝑒[(−12)( 𝐿𝑗2𝜎𝜓𝑗2 +𝜎𝑗2)]
 (3-1) 

Where: 𝑓(𝐿𝑖) = PDF of navigation errors as a function of DF station.  

 𝜎𝜓𝑗2  = Variance of angle of arrival measurement to DF station j.  

 𝐷𝑗2 = Distance from position fix to DF station j. 

  𝜎𝑗2 = Variance of position error in DF station j. 

 𝐿𝑗2 = Sum of the true bearing error and DF position error. 

The variance along an arbitrary X and Y axis can then be expressed as given in (3-2). 

(𝜎𝑋𝑁68)2 = 𝜇𝜆𝜇 − 𝜈2  (𝜎𝑌𝑁68)2 = 𝜆𝜆𝜇 − 𝜈2 (3-2) 

Where: 𝜆 = ∑ 𝑐𝑜𝑠2(𝛼𝑗) 𝜎𝜓𝑗2 𝐷𝑗2 + 𝜎𝑗2
𝑛
1   

 𝜇 = ∑ 𝑠𝑖𝑛2(𝛼𝑗)𝜎𝜓𝑗2 𝐷𝑗2 + 𝜎𝑗2
𝑛
1   

 𝜈 = ∑𝑠𝑖𝑛(𝛼𝑗) 𝑐𝑜𝑠(𝛼𝑗)𝜎𝜓𝑗2 𝐷𝑗2 + 𝜎𝑗2
𝑛
1   

 𝛼𝑗 = True bearing angle to DF station j.  

These variance values could be used to determine a distribution that represents the 

position uncertainty in the computed position. If for no other reason than computing the 

uncertainty of the initial position, this algorithm is applicable to the current research. 
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3.2.2 Dilution of Precision in Angle-of-Arrival Positioning Systems 

Dilution of Precision (DOP) relates ranging (measurement) errors to the error in 

computed position [40]. It has also become common to use DOP to quantify the effect of the 

receiver-satellite geometry on the accuracy of a GNSS position [41]. The mathematical 

expression for DOP is given in (3-3). 

𝜎𝑎 = DOP𝜎𝑟 (3-3) 

Where: 𝜎𝑎 = Standard deviation of computed position.  

 𝜎𝑟 = Standard deviation of range measurement.  

In his work, Dempster derives a DOP factor for two-dimensional angle-of-arrival 

positioning systems based on the illustration given in Figure 3-1 [42]. The uncertainty in the 

AOA measurements for two stations can be related to the user position (xu, yu) uncertainty as 

shown in (3-4) [42]. 

 
Figure 3-1: Geometry for Angle-of-Arrival Dilution of Precision Derivation [42]. 
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[𝑑𝜃1𝑑𝜃2] = 𝑯[𝑑𝑥𝑢𝑑𝑦𝑢] = [  
  −(𝑦𝑢 − 𝑦1)𝑟12 (𝑥𝑢 − 𝑥1)𝑟12−(𝑦𝑢 − 𝑦2)𝑟22 (𝑥𝑢 − 𝑥2)𝑟22 ]  

   [𝑑𝑥𝑢𝑑𝑦𝑢] (3-4) 

Where: 𝑑𝜃𝑛 = Error in AOA from station n.  

 𝑟𝑛 = Range from station n to the user position.  

 𝑥𝑛 = Station n x-position.  

 𝑦𝑛 = Station n y-position.  

 𝑥𝑢 = User’s x-position.  

 𝑦𝑢 = User’s y-position.  

 𝑑𝑥𝑢 = Error in user’s x-position.  

 𝑑𝑦𝑢 = Error in user’s y-position.  

The DOP value can then be computed using (3-5) [42]. 

DOP = √𝑡𝑟𝑎𝑐𝑒[(𝑯𝑇𝑯)−1] (3-5) 

Of more interest to the current research is the error in the user’s position, where the user’s 

position has been computed using AOA measurements. From (3-4), it is evident that the error in 

the user’s position can be determined as given in (3-6). 

[𝑑𝑥𝑢𝑑𝑦𝑢] = 𝑯−𝟏 [𝑑𝜃1𝑑𝜃2] (3-6) 

For an over-specified system (more than two stations), additional rows can be added to H 

following the same form. Then, a least-squares approximation of the error in the user’s position 

could be computed using a pseudo-inverse as shown in (3-7) [42]. 

[𝑑𝑥𝑢𝑑𝑦𝑢] = (𝑯𝑇𝑯)−𝟏𝑯𝑇
[  
  𝑑𝜃1𝑑𝜃2 ..𝑑𝜃𝑛]  

  
 (3-7) 
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3.3 Patented Work Related to Research 

This section provides a brief overview of three patents related to ADS-B validation and 

provides an assessment of the relevance of each disclosure to the present research.  

3.3.1 Device, System and Methods Using Angle of Arrival Measurements for ADS-B 

Authentication and Navigation 

United States Patent 2014/0327581 A1 details a method for utilizing AOA measurements 

to authenticate ADS-B transmissions. In addition, it describes a method to utilize AOA from 

ground based targets of opportunity to determine the receiver’s position [43]. The patent 

proposes that ADS-B authentication can be achieved by comparing the expected AOA derived 

from received ADS-B position and track with the actual angle of arrival of the RF signal 

determined using a direction finding receiver [43]. Discrepancies between the estimated AOA 

and the measured AOA would result in an indication of an ADS-B position validation failure.  

This theory is directly applicable to the current research because this is the method used 

to generate the EFK residuals that generate the filter gains. Refer to Section 2.3.1, and Equation 

(2-23) for additional information concerning the implementation of this principle. It should be 

noted; however, that the use of residuals to gauge the validity of a measurement is not novel, and 

has been fundamental in Kalman Filter implementations since the 1960’s. What may be 

considered novel is the use of ADS-B position information to calculate the estimated AOA. 

A secondary embodiment of [43] is a means to determine the receiver’s position using 

AOA information from multiple ground based targets of opportunity that transmit in the aviation 

frequency band [43]. This embodiment is also applicable to the current research as the present 

navigation solution utilizes multiple ADS-B AOA signals in a least-squares fashion to determine 

an estimate of the receiver’s position. However, it must be noted that the cited patent limits the 

position determination algorithm to the use of ground based targets of opportunity, where the 
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position of the transmitter is known. The current research utilizes airborne targets of opportunity 

to achieve a similar result. In the airborne case, the targets of opportunity are transmitting their 

position in the form of ADS-B packets, and the algorithm will simultaneously track and generate 

its own estimate of the target’s position. 

3.3.2 Validity Check of Vehicle Position Information 

United States Patent 2011/1063908 A1 describes a method for validating the position 

information being transmitted by an ADS-B capable aircraft using a direction finding antenna to 

determine the bearing from the receiver to the transmitter [44]. Given the position of the 

receiver, the bearing to the transmitter, and the distance to the transmitter, the transmitter’s 

location can be precisely determined and validated against the transmitted position [44]. The 

employment of the direction finding antenna to receive ADS-B data is directly applicable to the 

current research and provides additional confidence that such a device is feasible. However, the 

disclosure is currently impractical because the proposal theorizes that the distance to the 

transmitting aircraft can be calculated based on time of flight of the RF signal. This is not 

currently possible with ADS-B data packets because the time of transmission is not a member of 

the ADS-B data set. Therefore, an additional distance measuring sensor would be required to 

make this invention practical. Therefore, the concept is recognized as applicable to the current 

research, but of little tangible value. 

3.3.3 System and Method for Ensuring ADS-B Integrity of Departing Aircraft 

United States Patent 2015/9116240 B2 discloses an invention that seeks to validate the 

integrity of ADS-B data being transmitted by an aircraft preparing for departure [45]. The 

invention describes a system that would monitor the ADS-B output of an aircraft positioned in a 

designated area prior to departure. The invention would then provide a visual indication to the 

aircrew that the information being transmitted is valid and correct [45]. As this disclosure simply 
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describes a means to validate ADS-B output data without relying on or deriving an AOA from 

the ADS-B data, the information contained within this disclosure is of little interest to the present 

research. 

3.4 Three-Dimensional Self-Localization from Angle of Arrival Data 

Kim and Hmam present a method for determining a vehicle’s orientation and position 

based on three-dimensional AOA measurements made to stationary landmarks [46]. In this 

approach, the collinearity error between the estimated line-of-sight vector and the measured 

line-of-sight vector is minimized to develop the estimate [46]. Kim and Hmam claim that the 

algorithm displays rapid convergence and tolerates large measurement and tilt errors [46].  

Kim and Hmam’s research is not directly applicable to the current investigation because 

the realistic assumption has been made for this research that the host vehicle contains a sensor 

capable of determining the vehicle’s orientation; therefore, self-orientation is not required. 

Furthermore, Kim and Hmam’s work relies on the use of stationary landmarks. However, 

because Kim and Hmam’s research utilize AOA/AOE measurements in a similar manner to the 

current research, it may be plausible to extend their work to utilize airborne navigation aids 

instead of stationary landmarks. 
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4.0 METHOD 

The method described in this paper implements an EKF-SLAM-like algorithm that tracks 

the position and velocity of airborne navigation aids while simultaneously calculating the 

geodetic position of the host vehicle. Instead of utilizing fixed landmarks typical in a SLAM 

implementation, ADS-B capable aircraft act as airborne navigation aids (SLAM landmarks). 

Given the proliferation of ADS-B capable aircraft, the accuracy and availability of ADS-B 

position data, and the ability to accurately measure ADS-B AOA, ADS-B capable aircraft are 

ideal candidates for use as airborne navigation aids for a geo-positioning algorithm like the one 

described in this document. 

The navigation algorithm determines its best estimate of the position of each airborne 

navigation aid through fusion of the reported ADS-B information and the AOA/AOE of the 

received signal. Tracking each navigation aid independently allows the system to detect 

erroneous ADS-B position reports, and account for them, while utilizing the data to determine 

the position of the host vehicle. Detection of erroneous ADS-B position reports could then be 

forwarded to other aircraft and ADS-B ground stations, although this is considered beyond the 

scope of this paper. 

The terms landmark and airborne navigation aid are used somewhat interchangeably 

throughout this report. Strictly speaking, a landmark is a SLAM term referring to a fixed map 

reference; whereas an airborne navigation aid serves a similar purpose in the current research, 

albeit its location is known but not fixed.  

4.1 Approach to Overcome SLAM Constraints 

Section 2.4 described several of the major constraints related to the SLAM algorithm 

including: landmark initialization, landmark association, and computational complexity. The 

information contained in the ADS-B data set for each airborne navigation aid allows many of 



 

111 

these limiting factors and constraints to easily be mitigated. These mitigation strategies are 

described in the remainder of this section. 

As detailed in Section 2.1, the ADS-B message set contains identification, position, 

velocity, altitude, and uncertainty information for each transmitting aircraft. The presence of this 

data eliminates concerns of landmark initialization because the landmark location is provided in 

the data. As such, the landmark can immediately be initialized upon receipt of the first complete 

set of ADS-B data. Likewise, landmark association is overcome because each ADS-B 

transmission includes unique aircraft identification information that can be used as an index for 

the airborne navigation aid. 

The computational complexity of the SLAM algorithm is not as easily overcome as 

landmark initialization and landmark association. As discussed in Section 2.4, computational 

complexity is inherent in the SLAM algorithm and cannot be completely eliminated. In order to 

bound the complexity, airborne navigation aids that are no longer within the radio horizon of the 

host vehicle will be removed from the system state. According to research performed by 

Dissanayake, Durrant-Whyte, and Bailey, it is possible to remove a landmark from a SLAM map 

“without affecting the statistical consistency of the underlying estimation process” [47]. 

Therefore, this expansion and contraction of the state is considered a viable method to limit the 

computational complexity of the filter. Additional techniques could be considered to limit the 

number of airborne navigation aids contained in the system state to a tractable value. If the 

number of navigation aids were limited, then an algorithm could be developed to select the best 

airborne navigation aids for inclusion based on distance and geometry relative to the host 

vehicle. For purposes of this research, the number of navigation aids that the filter can track has 
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not been limited, nor has any consideration been given to selecting the best possible navigation 

aids from those available. 

4.2 Filter Formulation 

This section provides the technical solution for determining the geodetic position of the 

host vehicle based on the reception of AOA and AOE information from ADS-B equipped 

aircraft. The geodetic position is determined through implementation of an EKF-SLAM-like 

algorithm. The EKF and SLAM algorithms were previously described in Section 2.3.1 and 

Section 2.4 respectively. The navigation algorithm tracks the position and velocity of airborne 

navigation aids through fusion of the reported ADS-B information, the AOA, and the AOE of the 

received signal. In addition to tracking airborne navigation aids, the algorithm simultaneously 

calculates the geodetic position, velocity, and acceleration of the host vehicle. The remainder of 

the present section describes the design assumptions then details the formulation and 

initialization of the various matrices and vectors used in the implementation. 

4.2.1 Design Assumptions 

A number of assumptions have previously been stated and several more are necessary to 

finalize the design. This section provides a convenient listing of the assumptions that have been 

incorporated into the design. 

 All geodesic calculations are performed with respect to a spherical earth model. 

 The processing rate of the algorithm is sufficient as to allow aircraft state transitions 

to be calculated using linear propagation techniques. 

 The host vehicle state model assumes constant acceleration. 

 The airborne navigation aid state model assumes constant velocity. 

 ADS-B information can be received up to a maximum range of 190 NM provided that 

the transmitting and receiving aircraft have line-of-sight to one another. 
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 ADS-B AOA measurements are reported with respect to true north and have a RMSE 

of 0.7°. 

 ADS-B AOE measurements are reported with respect to a locally level tangent plane 

and have a RMSE of 0.7°. 

 An ADS-B aircraft’s vertical velocity uncertainty is assumed to be 1.5 times the 

lateral velocity uncertainty reported by that aircraft. 

4.2.2 State Vector 

The state vector for the host vehicle, presented in (4-1), contains estimates for the host 

vehicle’s position, velocity, and acceleration in the ECEF frame. The ECEF frame was selected 

because it does not contain the singularities present in geographic coordinate systems. 

𝒙̂ℎ = [𝒙̂𝑟ℎ 𝒙̂𝑟̇ℎ 𝒙̂𝑟̈ℎ] (4-1) 

Where:  𝒙̂ℎ = Host vehicle state vector in ECEF.  

  𝒙̂𝑟ℎ = Host vehicle position estimate in ECEF.  

 𝒙̂𝑟̇ℎ = Host vehicle velocity estimate in ECEF.  

 𝒙̂𝑟̈ℎ = Host vehicle acceleration estimate in ECEF.  

The state vector for the navigation aids is somewhat more complex due to the 

characteristics of the errors present in the ADS-B reported position and velocity. These errors are 

predominately caused by a combination of latency and navigational errors inherent in the 

transmitting aircraft’s navigation sensor suite, causing the ADS-B data to appear biased. 

Unfortunately, the mathematical model of these errors does not satisfy the fundamental Kalman 

Filter assumption that error sources are normally distributed, zero mean Gaussian random 

variables. Therefore, the state vector for each navigation aid is augmented using the 

Schmidt-Kalman techniques described in Section 2.3.2 to include states for these unobservable 

nuisance biases. The resulting state vector for each airborne navigation aid then contains 
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estimates for the navigation aid’s position, velocity, position measurement bias, and velocity 

measurement bias, all expressed in the ECEF frame. The state vector for an arbitrary airborne 

navigation aid is given in (4-2). 

𝒙̂𝑛 = [𝒙̂𝑟𝑛 𝒙̂𝑟̇𝑛 𝜹̂𝑟𝑛 𝜹̂𝑟̇𝑛] (4-2) 

Where: 𝒙̂𝑛 = Navigation aid state vector in ECEF.  

 𝒙̂𝑟𝑛 = Navigation aid position estimate in ECEF.  

  𝒙̂𝑟̇𝑛 = Navigation aid velocity estimate in ECEF.  

  𝜹̂𝑟𝑛  = Navigation aid position measurement bias in ECEF. Set and held to 0.  

 𝜹̂𝑟̇𝑛 = Navigation aid velocity measurement bias in ECEF. Set and held to 0.  

Finally, the host vehicle state and the state of each observed airborne navigation aid are 

expressed as the single combined state vector shown in (4-3); where m is the number of airborne 

navigation aids being tracked. It is evident that the state vector expands and contracts, as 

discussed in Section 4.1, to accommodate the changing number of navigation aids within the 

radio horizon. Following initialization, the elements of the state vector x are computed by the 

EKF. 

𝒙̂ = [𝒙̂ℎ 𝒙̂𝑛1 ⋯ 𝒙̂𝑛𝑚]𝑇 (4-3) 

4.2.3 State Covariance Matrix 

The state covariance matrix P, is a square matrix with dimensions (9+12m x 9+12m). The 

rows and columns of P express the covariance between the elements of the state vector x. 

Following initialization, the elements of P are computed by the EKF. 

4.2.4 Conditioning of ADS-B Data for use in the Filter 

Many of the data elements received in the ADS-B message are not of the proper form for 

direct use in the filter. For example, ADS-B position is given in the geographic frame and 

ADS-B velocity is given in the ENU frame. These measurements are not directly compatible 

with the ECEF frame selected for the filter. Accordingly, the ADS-B data must be rotated into 
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the ECEF frame prior to use in the filter. Additionally, ADS-B position and velocity uncertainty 

is expressed at the 95% containment level, while the filter requires normally distributed random 

variables. As such, the ADS-B uncertainty values must be appropriately scaled and expressed in 

the ECEF frame before being used in the filter. This section describes the preliminary ADS-B 

data conversions that take place prior to applying ADS-B data to the filter. 

4.2.4.1 ADS-B Position Conversion 

Received ADS-B position data is expressed in the geographical latitude/longitude 

coordinate system and must be converted to ECEF using the relationships presented in Section    

0 prior to use by the filter. This collection of conversions is given in (4-4) through (4-6). 

𝑟̃𝑛𝑥 = (𝑅𝑚) 𝑐𝑜𝑠(𝜑̃𝑛) 𝑐𝑜𝑠(𝜆̃𝑛) (4-4) 

Where: 𝑟̃𝑛𝑥 = Measured navigation aid ECEF x coordinate. 

 𝑅𝑚  = Mean spherical radius of the Earth. 

 𝜑̃𝑛 = Reported navigation aid geodetic latitude. 

 𝜆̃𝑛 = Reported navigation aid geodetic longitude. 

 𝑟̃𝑛𝑦 = (𝑅𝑚) 𝑐𝑜𝑠(𝜑̃𝑛) 𝑠𝑖𝑛(𝜆̃𝑛) (4-5) 

Where: 𝑟̃𝑛𝑦 = Measured navigation aid ECEF y coordinate. 

 𝑟̃𝑛𝑧 = (𝑅𝑚)𝑠𝑖𝑛 (𝜑̃𝑛) (4-6) 

Where: 𝑟̃𝑛𝑧 = Measured navigation aid ECEF z coordinate. 

4.2.4.2 ADS-B Velocity Conversion 

The ADS-B velocity data received from airborne navigation aids is presented in the ENU 

frame and must be expressed in the ECEF frame using the rotations given in Section 2.6.1.1.5. 

This is expressed in (4-7). 
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𝒓̃̇𝑛 = [𝑟̃̇𝑛𝑥𝑟̃̇𝑛𝑦𝑟̃̇𝑛𝑧
] = 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹 [𝑟̃̇𝑛𝑁𝑟̃̇𝑛𝐸𝑟̃̇𝑛𝐷

] (4-7) 

Where: 𝒓̃̇𝑛 = Measured navigation aid ECEF velocity vector. 

 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹 = Coordinate conversion matrix from NED to ECEF = 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 𝑇
. Refer to (2-77). 

 𝑟̃̇𝑛𝑁 = Reported navigation aid velocity north. 

 𝑟̃̇𝑛𝐸 = Reported navigation aid velocity east. 

 𝑟̃̇𝑛𝐷 = Reported navigation aid velocity down = −𝑟̃̇𝑛𝑈 

4.2.4.3 ADS-B Position Uncertainty Conversions 

The Aircraft Operational Status Message provides an indication of the airborne 

navigation aid’s lateral and vertical position uncertainty. The lateral position uncertainty is given 

as a zero-mean, 95% Rayleigh distributed random variable, while the vertical position 

uncertainty expressed as a zero-mean, 95% Gaussian random variable. Prior to use in the filter, 

these 95% uncertainty level values must be converted to their respective normally distributed 

68% uncertainty levels. As a safety factor to mitigate against the possibility of the filter 

generating overly optimistic estimates from these values, the position inputs will be treated 

though they are provided at the 92.5% containment level rather than the defined 95% 

containment level. Using the constants described in Section 2.5, these conversions are given as 

(4-8) and (4-9) respectively. 

 

𝜎̃𝑟𝑛𝑙𝑁68 = 𝜎̃𝑟𝑛𝑙𝑅952.276079 (4-8) 

Where: 𝜎̃𝑟𝑛𝑙𝑁68 = Measured navigation aid lateral position uncertainty (68% containment). 

 𝜎̃𝑟𝑛𝑙𝑅95 = Reported navigation aid lateral position uncertainty (95% containment). 

 2.276079 = Statistical conversion from Rayleigh 92.5% to Normal 68%. 
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𝜎̃𝑟𝑛𝑣𝑁68 = 𝜎̃𝑟𝑛𝑣𝑁951.780464 (4-9) 

Where: 𝜎̃𝑟𝑛𝑣𝑁68 = Measured navigation aid vertical position uncertainty (68% containment). 

 𝜎̃𝑟𝑛𝑣𝑁95 = Reported navigation aid vertical position uncertainty (95% containment). 

 1.780464 = Statistical conversion from Normal 92.5% to Normal 68%. 

Once expressed at the 68% uncertainty level, the navigation aid lateral and vertical 

uncertainties are gathered into a NED vector, and then rotated into the ECEF frame using the 

techniques presented in Section 2.6.1.1.5. This rotation is presented as (4-10).  

𝑹̃𝑟𝑛 = (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)
(
   𝑑𝑖𝑎𝑔

[  
   (𝜎̃𝑟𝑛𝑙𝑁68)2
(𝜎̃𝑟𝑛𝑙𝑁68)2
(𝜎̃𝑟𝑛𝑣𝑁68)2]  

   
)
   (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)𝑇

 (4-10) 

Where: 𝑹̃𝑟𝑛 = Measured navigation aid ECEF position measurement covariance matrix. 

 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹 = Coordinate conversion matrix from NED to ECEF. 

 𝑑𝑖𝑎𝑔 = Operator used to construct a diagonal matrix of the input values.  

Following rotation, the navigation aid uncertainties are contained in a fully populated 3x3 

matrix with covariance present between the three ECEF axes. The main diagonal elements of the 

rotated matrix provide the variance for each ECEF axis; however, unless otherwise specified, the 

full covariance matrix is retained and used in filter calculations. 

4.2.4.4 ADS-B Velocity Uncertainty Conversions 

Following a similar process to that used for ADS-B position uncertainty, the velocity 

uncertainty must be scaled and rotated prior to use in the filter. The lateral velocity uncertainty is 

given in the Airborne Velocity Message as a zero-mean, 95% Rayleigh random variable. The 

ADS-B data set does not provide a vertical velocity uncertainty; therefore, the vertical velocity 

uncertainty is assumed to be 1.5 times the lateral velocity uncertainty. Although not directly 

stated, this relationship is implied on page 443 of DO-260B where it is stated that a NACv = 2 
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requires a horizontal velocity error of less than 3 m/s and a vertical velocity error of less than 15 

ft/sec [1]. The 1.5 constant of proportionality is evident when one accounts for the mixed units in 

this expression. The statistical scaling and subsequent rotation to the ECEF frame are provided in 

(4-11) through (4-13). 

𝜎̃𝑟̇𝑛𝑙𝑁68 = 𝜎̃𝑟̇𝑛𝑙𝑅952.447747 (4-11) 

Where: 𝜎̃𝑟̇𝑛𝑙𝑁68 = Measured navigation aid lateral velocity uncertainty (68% containment). 

 𝜎̃𝑟̇𝑛𝑙𝑅95 = Reported navigation aid lateral velocity uncertainty (95% containment). 

 2.447747 = Statistical conversion from Rayleigh 95% to a Normal 68% random variable. 

 

 𝜎̃𝑟̇𝑛𝑣𝑁68 = 1.5𝜎̃𝑟̇𝑛𝑙𝑁68 (4-12) 

Where: 𝜎̃𝑟̇𝑛𝑣𝑁68 = Measured navigation aid vertical velocity uncertainty (68% containment). 

 1.5 = Constant of proportionality between lateral and vertical velocity uncertainty. 

 

 

𝑹̃𝑟̇𝑛 = (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)
(
   𝑑𝑖𝑎𝑔

[  
   (𝜎̃𝑟̇𝑛𝑙𝑁68)2
(𝜎̃𝑟̇𝑛𝑙𝑁68)2
(𝜎̃𝑟̇𝑛𝑣𝑁68)2]  

   
)
   (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)𝑇

 (4-13) 

Where: 𝑹̃𝑟̇𝑛 = Measured navigation aid ECEF velocity measurement covariance matrix. 

 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹 = Coordinate conversion matrix from NED to ECEF. 

 𝑑𝑖𝑎𝑔 = Operator used to construct a diagonal matrix of the input values.  

4.2.5 Time Propagation 

Fundamental to the concept of Kalman filtering is the process of developing an estimate 

of the system state based on the system model. For this application, a time propagation rate of 10 

Hz has been selected. This rate allows a linear state transition to be assumed because the 

non-linearity due to the curvature of the Earth over the distance traveled in 100 milliseconds at 

subsonic speeds can be considered negligible. Given the assumption of local linearity, the a 
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priori estimate of the system state and covariance are determined using the linear Kalman Filter 

time update equations previously given in (2-10) and (2-11), and restated as (4-14) and (4-15) for 

convenience.   

𝒙̂𝑘− = 𝑨𝒙̂𝑘−1 (4-14) 

Where: 𝒙̂𝑘 = System state at time k, described in Section 4.2.1.  

 𝑨 = State transition matrix described in Section 4.2.5.1.  

 𝑷𝑘− = 𝑨𝑷𝑘−1𝑨𝑇 + 𝑸 (4-15) 

Where: 𝑷𝑘 = Covariance matrix at time k, described in Section 4.2.3.  

 𝑸 = Process noise matrix described in Section 4.2.5.2.  

4.2.5.1 State Transition Matrix 

The state transition matrix provides a system model by which to propagate the system 

state and covariance forward in time to generate the a priori estimates. Because linear 

propagation has been assumed for the motion model, the state transition matrix primarily models 

the linear kinematic equations of motion presented in (4-16) and (4-17). The expression in (4-16) 

assumes constant acceleration; while the alternate form in (4-17) assumes constant velocity. For 

purposes of this implementation, constant acceleration is assumed for the host vehicle, while 

constant velocity is assumed for the motion of the airborne navigation aids. 

𝒓 = 𝒓0 + 𝒓̇𝑡 + 12 𝒓̈𝑡2 (4-16) 

Where: 𝒓 = Position vector in ECEF.  

 𝒓0 = Previous/initial position vector in ECEF.  

 𝒓̇ = Velocity vector in ECEF.  

 𝒓̈ = Acceleration vector in ECEF.  

 𝑡 = Time interval.  

 𝒓 = 𝒓0 + 𝒓̇𝑡 (4-17) 
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In addition to modelling the equations of linear motion, the state transition matrix also 

provides a model for the unobservable navigation aid bias states. These bias states are modeled 

as first order Gauss-Markov random stochastic processes. A Gauss-Markov process can be 

generated by passing uncorrelated white noise through a linear first-order feedback filter [48]. 

For these random processes, the probability distribution is entirely dependent on the preceding 

estimate [48]. The differential equation governing these continuous systems is provided in (4-18) 

[48]; while the corresponding difference equation for discrete systems is given in (4-19) [48]. 

The state transition matrix models the exponential term of (4-19), while the process noise matrix 

described the following section accounts for the white noise component. 

𝑣̇ = −𝛽𝑣 + 𝑤 (4-18) 

Where: 𝑣 = Random Gauss-Markov variable   

 𝑣̇ = Derivative of random Gauss-Markov variable.  

 𝛽 = Correlation time = 1/𝜏  

 𝑤 = White noise.  

 𝑣𝑘+1 = 𝑒−𝛽𝑡𝑣𝑘 + 𝑤𝑘 (4-19) 

Where: 𝑣𝑘 = Random Gauss-Markov variable at step k.  

 𝛽 = Correlation time = 1/𝜏  

 𝑡 = Time between steps.  

 𝑤𝑘 = White noise at step k.  

An expression for the state transition matrix for a single dimension of host vehicle motion 

is given in (4-20). Similarly, the single dimension state transition expression for airborne 

navigation aid motion is provided in the upper 2x2 submatrix of (4-21). Finally, the lower 2x2 

submatrix of (4-21) provides the state transition for the bias states. These single dimension 

expressions are easily extended to three dimensions as shown in the resulting (9+12m x 9+12m) 

state transition matrix presented in (4-22). 
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Although the elements of the state transition matrix are constant, the matrix is constructed 

at each time step to account for changes in the number of tracked navigation aids. As an 

implementation optimization, this matrix could be preserved in persistent memory and updated 

only when a change in the number of tracked navigation aids is detected. For purposes of this 

research, the matrix is reconstructed at each time step. 

𝑨ℎ𝑥,𝑦,𝑧 = [1 𝑑𝑡 0.5𝑑𝑡20 1 𝑑𝑡0 0 1 ] (4-20) 

Where: 𝑨ℎ = State transition matrix for host vehicle motion. 

 𝑑𝑡 = Propagation time interval = 0.1 seconds. 

 

 

𝑨𝑛𝑥,𝑦,𝑧 =
[  
  1 𝑑𝑡 0 00 1 0 00 0 𝑒−𝑑𝑡𝜏𝑟 00 0 0 𝑒−𝑑𝑡𝜏𝑟̇ ]  

  
 (4-21) 

Where: 𝑨𝑛 = State transition matrix for navigation aid vehicle motion. 

 𝜏𝑟 = Time constant for position biases = 300 seconds (empirically derived). 

 𝜏𝑟̇ = Time constant for velocity biases = 90 seconds (empirically derived). 
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𝑨 = [  
 𝑨ℎ 0 0 00 𝑨𝑛1 0 00 0 ⋱ 00 0 0 𝑨𝑛𝑚]  

 
 (4-22) 

Where: 𝑨 = Combined state transition matrix. 

 𝑨ℎ = State transition matrix for the host vehicle motion. 

 

 = 

[ 
   
   
 1 0 0 𝑑𝑡 0 0 0.5𝑑𝑡2 0 00 1 0 0 𝑑𝑡 0 0 0.5𝑑𝑡2 00 0 1 0 0 𝑑𝑡 0 0 0.5𝑑𝑡20 0 0 1 0 0 𝑑𝑡 0 00 0 0 0 1 0 0 𝑑𝑡 00 0 0 0 0 1 0 0 𝑑𝑡0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1 ] 

   
   
 
 

 𝑨𝑛𝑚 = State transition matrix for navigation aid m motion. 

 

 = 

[ 
   
   
   
   
  1 0 0 𝑑𝑡 0 0 0 0 0 0 0 00 1 0 0 𝑑𝑡 0 0 0 0 0 0 00 0 1 0 0 𝑑𝑡 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 𝑒−𝑑𝑡𝜏𝑟 0 0 0 0 00 0 0 0 0 0 0 𝑒−𝑑𝑡𝜏𝑟 0 0 0 00 0 0 0 0 0 0 0 𝑒−𝑑𝑡𝜏𝑟 0 0 00 0 0 0 0 0 0 0 0 𝑒−𝑑𝑡𝜏𝑟̇ 0 00 0 0 0 0 0 0 0 0 0 𝑒−𝑑𝑡𝜏𝑟̇ 00 0 0 0 0 0 0 0 0 0 0 𝑒−𝑑𝑡𝜏𝑟̇] 

   
   
   
   
  

 

4.2.5.2 Process Noise 

The process noise matrix Q, is used to account for imperfections in the system model that 

would be difficult or impossible to include in the model. This term can be considered 

synonymous with plant noise in control theory. One classic example of process noise applicable 

to this solution is that kinematic systems are continuous, implying that the outputs can vary at 

any point in time; however, the Kalman filter is a discrete system that assumes constant inputs at 

each time step [49]. The process noise matrix is used to add uncertainty to the Kalman system to 
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account for these types of simplifying assumptions. Other sources of process noise present in this 

solution are the assumption of linear motion, the use of a spherical Earth model, and the batch 

application of measurements that are received between periodic time propagation intervals. 

4.2.5.2.1 Host Vehicle Process Noise 

The process noise matrix for the host vehicle is constructed using the piecewise white 

noise model described in [49]. In this model, the highest order state transition term is assumed 

constant for the duration of each time step [49]. Following this assumption, acceleration is 

assumed constant for each time step, implying that the one-dimensional change in velocity and 

position are as shown in (4-23) and (4-24); where these values were determined through 

integration of the acceleration. 

∆𝑟̇ = 𝑟̈𝑑𝑡 (4-23) 

Where: ∆𝑟̇ = Change in velocity.  

 𝑟̈ = Acceleration.  

 𝑑𝑡 = Time interval.  

 ∆𝑟 = 0.5𝑟̈𝑑𝑡2 (4-24) 

Where: ∆𝑟 = Change in position.  

The change in system state assuming constant acceleration can then be modeled in matrix 

form as given in (4-25) [49]. 

𝜞 = [∆𝑟∆𝑟̇∆𝑟̈] = [0.5𝑑𝑡2𝑑𝑡1 ] 𝑟̈ (4-25) 

Where: 𝜞 = Change in system state.  

The covariance of the process noise is then expressed as the statistical expectation shown 

in (4-26) [49]. 

𝑸 = 𝛦[𝜞𝑟̈𝑟̈𝜞𝑇] = 𝜞(𝜎𝑟̈ℎ𝑁68)2𝜞𝑇  (4-26) 

Where: (𝜎𝑟̈ℎ𝑁68)2
 = Variance of host vehicle acceleration.  



 

124 

Performing the matrix multiplication of (4-26), and factoring out the variance, results in 

the one-dimensional process noise for the host vehicle shown in (4-27). Extending the 

one-dimensional process noise to three dimensions leads directly to (4-28). 

𝑸ℎ𝑥,𝑦,𝑧 =
[  
   
 𝑑𝑡44 𝑑𝑡32 𝑑𝑡22𝑑𝑡32 𝑑𝑡2 𝑑𝑡𝑑𝑡22 𝑑𝑡 1 ]  

   
 
(𝜎𝑟̈ℎ𝑁68)2

 (4-27) 

Where: 𝑸ℎ𝑥,𝑦,𝑧 = One dimensional host vehicle process noise.  

 

𝑸ℎ = 

[ 
  
  
  
  
  
  
  
  
  𝑑𝑡44 0 0 𝑑𝑡32 0 0 𝑑𝑡22 0 0

0 𝑑𝑡44 0 0 𝑑𝑡32 0 0 𝑑𝑡22 0
0 0 𝑑𝑡44 0 0 𝑑𝑡32 0 0 𝑑𝑡22𝑑𝑡32 0 0 𝑑𝑡2 0 0 𝑑𝑡 0 0
0 𝑑𝑡32 0 0 𝑑𝑡2 0 0 𝑑𝑡 0
0 0 𝑑𝑡32 0 0 𝑑𝑡2 0 0 𝑑𝑡𝑑𝑡22 0 0 𝑑𝑡 0 0 1 0 0
0 𝑑𝑡22 0 0 𝑑𝑡 0 0 1 0
0 0 𝑑𝑡22 0 0 𝑑𝑡 0 0 1 ] 

  
  
  
  
  
  
  
  
  

(𝜎𝑟̈ℎ𝑁68)2
 

(4-28) 

Where: 𝑸ℎ = Host vehicle process noise covariance matrix. 

 (𝜎𝑟̈ℎ𝑁68)2
 = Empirically derived variance of host vehicle acceleration = (0.075)2  

4.2.5.2.2 Airborne Navigation Aid Process Noise 

The process noise matrix for the airborne navigation aids is a function of the navigation 

aid position and velocity uncertainty values received in the ADS-B message set. In addition to 

position and velocity uncertainty, the matrix models the variance of the of the Gauss-Markov 
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position and velocity bias states. The general form of the Gauss-Markov variance shown in 

(4-29) was provided by Gelb in [48]. An informal justification of this value is provided in 

APPENDIX G.  

(𝜎𝑤)2 = 2𝛽(𝜎𝑣)2 (4-29) 

Where: (𝜎𝑤)2 = Gauss-Markov process variance.   

 𝛽 = Correlation time = 1/𝜏  

 (𝜎𝑣)2 = Gauss-Markov random variable variance.  

Depending on the bias state being modeled, the Gauss-Markov random variable variance 

term of (4-29) represents either a position or velocity bias variance. The position variance 

described in Section 4.2.4.3 accounts for potential biases present in the navigation system of the 

transmitting aircraft, but it cannot not account for ADS-B transmission latency. Because 

transport latency can contribute significantly to the overall navigation aid position uncertainty – 

especially for highly accurate navigation aids – the position variance reported by the navigation 

aid is augmented with a position latency variance when modeling the bias state covariance. 

These position latency variances are based on the aircraft velocity and the median of the 

expected latency. The final 3x3 position latency covariance matrix expressed in the ECEF frame 

is given in (4-30). 
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𝑸̂∆𝑡𝑟 = (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)
(
   𝑑𝑖𝑎𝑔

[  
   (𝜎̂∆𝑡𝑟𝑁𝐸𝑁68 )2
(𝜎̂∆𝑡𝑟𝑁𝐸𝑁68 )2
(𝜎̂∆𝑡𝑟𝐷𝑁68)2 ]  

   
)
   (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)𝑇

 (4-30) 

Where: 𝑸̂∆𝑡𝑟 = Navigation aid process noise position latency covariance matrix (3x3). 

 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹 = Coordinate conversion matrix from NED to ECEF. 

 (𝜎̂∆𝑡𝑟𝑁𝐸𝑁68 )2
 = Estimated North/East position latency variance: 

  = (∆𝑡𝑟)2 [(𝑟̃̇𝑛𝑁)2 + (𝑟̃̇𝑛𝐸)2] 
 (𝜎̂∆𝑡𝑟𝐷𝑁68)2

 = Estimated vertical position latency variance = (∆𝑡𝑟)2(−𝑟̃̇𝑛𝑈)2
 

 ∆𝑡𝑟 = 50th percentile position measurement latency: 

50th percentile ADS-B transmit latency 0.20 seconds 

50th percentile navigation processing latency 0.05 seconds 

Total 0.25 seconds 
 

 𝑟̃̇𝑛𝑁 = ADS-B reported navigation aid velocity north. 

 𝑟̃̇𝑛𝐸 = ADS-B reported navigation aid velocity east. 

 𝑟̃̇𝑛𝑈 = ADS-B reported navigation aid velocity up. 

Substituting the navigation aid position measurement variance described in Section 

4.2.4.3, and its corresponding position latency variance given in (4-30), into (4-29) leads to the 

expression for the (3x3) navigation aid position bias process noise covariance matrix given as 

(4-31). 

𝑸̂𝛿𝑟𝑛 = 2𝛽𝑟[𝑹̃𝑟𝑛 + 𝑸̂∆𝑡𝑟] (4-31) 

Where: 𝑸̂𝛿𝑟𝑛  = Navigation aid position measurement bias process noise covariance matrix.  

 𝛽𝑟 = Position correlation time = 1/𝜏𝑟  = 1/300; where 300 was empirically derived. 

 𝑹̃𝑟𝑛 = Navigation aid ECEF position covariance matrix. Refer to Section 4.2.4.3. 

The navigation aid velocity bias process noise is constructed by substituting the velocity 

variance described in Section 4.2.4.4 into (4-29). This is shown in (4-32). 
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𝑸̂𝛿𝑟̇𝑛 = 2𝛽𝑟̇𝑹̃𝑟̇𝑛  (4-32) 

Where: 𝑸̂𝛿𝑟̇𝑛  = Navigation aid velocity measurement bias process noise covariance matrix.  

 𝛽𝑟̇ = Velocity correlation time = 1/𝜏𝑟̇  = 1/90; where 90 was empirically derived. 

 𝑹̃𝑟̇𝑛 = Navigation aid ECEF velocity covariance matrix. Refer to Section 4.2.4.4. 

The ensuing (12x12) process noise for an arbitrary navigation aid is given in (4-33). 

𝑸𝑛 =
[ 
  
 0.00875 𝑹̃𝑟𝑛 0 0 00 0.05 𝑹̃𝑟̇𝑛 0 00 0 𝑸̂𝛿𝑟𝑛 00 0 0 𝑸̂𝛿𝑟̇𝑛] 

  
 𝑑𝑡 (4-33) 

Where: 𝑸𝑛 = Navigation aid process noise matrix. 

 0.00875 = Empirically derived position uncertainty scaling factor. 

 0.05 = Empirically derived velocity uncertainty scaling factor. 

4.2.5.2.3 Combined Process Noise Matrix 

The process noise matrix for the host vehicle and for each airborne navigation aid are 

then combined into a single (9+12m x 9+12m) matrix shown in (4-34). The combined process 

noise matrix must be constructed at each time step to account for changing numbers of 

navigation aids and changes in navigation aid uncertainty. 

𝑸 = [  
 𝑸ℎ 0 0 00 𝑸𝑛1 0 00 0 ⋱ 00 0 0 𝑸𝑛𝑚]  

 
 (4-34) 

Where: 𝑸 = Process noise matrix (9+12m x 9+12m).  

 𝑸ℎ = Host vehicle process noise sub-matrix (4-28).  

 𝑸𝑛𝑚 = Airborne navigation aid m process noise sub-matrix (4-33).  

4.2.6 Observation Update 

Observation updates are also applied using a 10 Hz frame rate. An observation 

(measurement) update is applied independently (not batched) for each navigation aid that has 

provided fresh ADS-B data in the preceding 100 milliseconds. ADS-B position and velocity 
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messages are used to update the corresponding navigation aid state, while AOA and AOE 

measurements are simultaneously applied to both the host vehicle and the source navigation aid. 

Observations are applied using the following order of precedence: position messages, velocity 

messages, and then operational status messages. That is, if both a velocity message and a 

position message have been received from a given navigation aid in the preceding 100 

milliseconds, then only the position message is used to update the filter. The remainder of this 

section defines the contents of the various matrices that are used in the observation update 

process previously given in (2-28) through (2-31). 

4.2.6.1 Measurement Vector 

The measurement vector is a column vector of the measured data that is to be applied to 

the filter. Since it contains measured data, its contents vary as a function of the type of ADS-B 

packet being processed. The AOA and AOE data is applied independently of the position or 

velocity data; therefore, the AOA/AOE measurements are expressed in a separate measurement 

vector. This separation of measurements is not strictly necessary, but is preferred because 

position and velocity measurements are applied only to the airborne navigation aids being 

tracked, while AOA and AOE measurements are applied to both the navigation aids and the host 

vehicle. Equation (4-35) gives the measurement vector for an ADS-B position message, while 

(4-36) is the measurement vector for an ADS-B velocity message. Finally, (4-37) provides the 

measurement vector for AOA/AOE measurements. 

𝒛̃𝑝𝑜𝑠 = [𝑟̃𝑛𝑥 𝑟̃𝑛𝑦 𝑟̃𝑛𝑧]𝑇 (4-35) 

Where: 𝒛̃𝑝𝑜𝑠 = Airborne navigation aid position measurement vector. 

 𝑟̃𝑛𝑥,𝑦,𝑧 = Navigation aid ADS-B reported position in the ECEF frame (Section 4.2.4.1). 
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𝒛̃𝑣𝑒𝑙 = [𝑟̃̇𝑛𝑥 𝑟̃̇𝑛𝑦 𝑟̃̇𝑛𝑧]𝑇 (4-36) 

Where: 𝒛̃𝑣𝑒𝑙 = Airborne navigation aid velocity measurement vector. 

 𝑟̃̇𝑛𝑥,𝑦,𝑧 = Navigation aid ADS-B reported velocity in the ECEF frame (Section 4.2.4.2). 

 𝒛̃𝛼𝛽 = [𝛼̃𝑛 𝛽̃𝑛 ]𝑇 (4-37) 

Where: 𝒛̃𝛼𝛽 = Airborne navigation aid AOA/AOE measurement vector.  

 𝛼̃𝑛 = True North referenced AOA of navigation aid m ADS-B data.  

 𝛽̃𝑛 = Locally level referenced AOE of navigation aid m ADS-B data.  

The AOA is assumed to be expressed with respect to True North and the AOE is assumed 

to be expressed with respect to a locally level tangent plane. Expressing the AOA and AOE in 

these frames is assumed to be a function of the virtual ADS-B receiver as described in Section 

1.3; accordingly, no data conversions are required for AOA/AOE data.  

The measurement vector must be evaluated at each time step and for each airborne 

navigation aid for which data has been received since the last measurement update. 

4.2.6.2 Measurement (Geometry) Matrix 

The measurement matrix relates the estimated state of the system to the measured data. In 

less formal terms, the measurement matrix is used by the EKF-SLAM algorithm to generate an 

estimate of the expected measurement values based only on the current system state. As 

previously described in Section 2.3, these estimated measurements are then compared with the 

actual measurements to generate the Kalman. 

Position and velocity information for each airborne navigation aid is included in the state 

vector, allowing their values to be estimated directly from the state. On the other hand, 

calculating AOA and AOE estimates from the state vector requires the implementation of the 

non-linear functions provided by Leick et al. in (4-38) and (4-39) [41]. Derivations of these 

equations are provided in APPENDIX H. 
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𝛼̂ = 𝑡𝑎𝑛−1 [ − 𝑠𝑖𝑛(𝜆𝑜) 𝛥𝑥 + 𝑐𝑜𝑠 (𝜆𝑜)𝛥𝑦− 𝑠𝑖𝑛(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜) 𝛥𝑥 − 𝑠𝑖𝑛(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝛥𝑦 + 𝑐𝑜𝑠 (𝜑𝑜)𝛥𝑧] (4-38) 

Where: 𝛼̂ = Angle of arrival estimate.  

 𝜑𝑜 = Latitude of the origin of the local coordinate frame (host vehicle).  

 𝜆𝑜 = Longitude of the origin of the local coordinate frame (host vehicle).  

 ∆𝑿 = [∆𝑥∆𝑦∆𝑧] = [𝑟̂𝑛𝑥 − 𝑟̂ℎ𝑥𝑟̂𝑛𝑦 − 𝑟̂ℎ𝑦𝑟̂𝑛𝑧 − 𝑟̂ℎ𝑧
]  

 𝑟̂𝑛𝑥,𝑦,𝑧 = ECEF position estimate of the navigation aid used for updating.  

 𝑟̂ℎ𝑥,𝑦,𝑧 = ECEF position estimate of the host vehicle.  

 𝛽̂ = 𝑠𝑖𝑛−1 [𝑐𝑜𝑠(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜)𝛥𝑥 + 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝛥𝑦 + 𝑠𝑖𝑛 (𝜑𝑜)𝛥𝑧𝑠 ] (4-39) 

Where: 𝛽̂ = Angle of elevation estimate.  

 𝑠 = Magnitude of the vector from the host vehicle to the navigation aid.  

As described in the Extended Kalman Filter overview of Section 2.3.1, and shown in 

(2-23), the vector function 𝒉(𝒙̂) is a non-linear vector function that is used to generate the 

estimate of the measured values. The formulation of the vector function h varies based on the 

type of ADS-B data being processed. As such, (4-40) defines h for a position measurement, 

(4-41) describes h for a velocity measurement, and (4-42) gives h for the AOA/AOE 

measurements. 

𝒉𝑝𝑜𝑠 = 𝒛̂𝑝𝑜𝑠 = [𝑟̂𝑛𝑥 𝑟̂𝑛𝑦 𝑟̂𝑛𝑧]𝑇 = [(𝒙̂𝑟𝑛𝑥) (𝒙̂𝑟𝑛𝑦) (𝒙̂𝑟𝑛𝑧)]𝑇 (4-40) 

Where: 𝒛̂𝑝𝑜𝑠 = Estimate of airborne navigation aid position measurement data.  

 𝑟̂𝑛𝑥,𝑦,𝑧 = Estimate of airborne navigation aid position in ECEF.  

 𝒙̂𝑟𝑛𝑥,𝑦,𝑧  = State vector estimate of the airborne navigation aid position in ECEF.  
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𝒉𝑣𝑒𝑙 = 𝒛̂𝑣𝑒𝑙 = [𝑟̂̇𝑛𝑥 𝑟̂̇𝑛𝑦 𝑟̂̇𝑛𝑧]𝑇 = [(𝒙̂𝑟̇𝑛𝑥) (𝒙̂𝑟̇𝑛𝑦) (𝒙̂𝑟̇𝑛𝑧)]𝑇 (4-41) 

Where: 𝒛̂𝑝𝑜𝑠 = Estimate of airborne navigation aid velocity measurement data.  

 𝑟̂𝑛𝑥,𝑦,𝑧 = Estimate of airborne navigation aid velocity in ECEF.  

 𝒙̂𝑟𝑛𝑥,𝑦,𝑧  = State vector estimate of the airborne navigation aid velocity in ECEF.  

 𝒉𝛼𝛽 = 𝑧̂𝛼𝛽 = [𝛼̂ 𝛽̂]𝑇 (4-42) 

Where: 𝑧̂𝛼𝛽 = Estimate of AOA & AOE measurement data.  

 𝛼̂ = AOA estimate generated from the state vector. Refer to (4-38).  

 𝛽̂ = AOE estimate generated from the state vector. Refer to (4-39).  

The Extended Kalman Filter overview of Section 2.3.1 explains that the measurement 

matrix H is computed as the Jacobian of the vector function h. For position and velocity 

measurements, this results in a (3 x 9+12m) matrix with the elements shown in (4-43). The AOA 

and AOE measurements require a (2 x 9+12m) matrix of the same form. 

𝑯[𝑖,𝑗] = 𝜕𝒉[𝑖](𝒙)𝜕𝒙[𝑗]  (4-43) 

⇒ 𝑯[𝑖,𝑗] =
[ 
   
  𝜕𝒉[1]𝜕𝒙̂[1]

𝜕𝒉[1]𝜕𝒙̂[2] . . . 𝜕𝒉[1]𝜕𝒙̂[𝑛]𝜕𝒉[2]𝜕𝒙̂[1]
𝜕𝒉[2]𝜕𝒙̂[2] . . . 𝜕𝒉[2]𝜕𝒙̂[𝑛]𝜕𝒉[3]𝜕𝒙̂[1]
𝜕𝒉[3]𝜕𝒙̂[2] . . . 𝜕𝒉[3]𝜕𝒙̂[𝑛]] 

   
  
 

 

The partial derivatives for the non-zero elements of H when an ADS-B position 

measurement is being applied are given in (4-44). Similarly, the non-zero elements for an ADS-

B velocity measurement are provided in (4-45). Finally, the partial derivatives for 𝛼̂ and 𝛽̂ (AOA 

and AOE measurements) given in (4-46) were provided by Leick et al. in [41]. 
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𝜕𝒉𝑝𝑜𝑠[1]𝜕𝒙̂𝑛[1] = −𝜕𝒉𝑝𝑜𝑠[1]𝜕𝒙̂𝑛[7] = 1 (4-44) 

𝜕𝒉𝑝𝑜𝑠[2]𝜕𝒙̂𝑛[2] = −𝜕𝒉𝑝𝑜𝑠[2]𝜕𝒙̂𝑛[8] = 1 
 

𝜕𝒉𝑝𝑜𝑠[3]𝜕𝒙̂𝑛[3] = −𝜕𝒉𝑝𝑜𝑠[3]𝜕𝒙̂𝑛[9] = 1 
 

 

 𝜕𝒉𝑣𝑒𝑙[1]𝜕𝒙̂𝑛[4] = −𝜕𝒉𝑣𝑒𝑙[1]𝜕𝒙̂𝑛[10] = 1 (4-45) 

𝜕𝒉𝑣𝑒𝑙[2]𝜕𝒙̂𝑛[5] = −𝜕𝒉𝑣𝑒𝑙[2]𝜕𝒙̂𝑛[11] = 1 
 

𝜕𝒉𝑣𝑒𝑙[3]𝜕𝒙̂𝑛[6] = −𝜕𝒉𝑣𝑒𝑙[3]𝜕𝒙̂𝑛[12] = 1 
 

 

 𝜕𝒉𝛼𝛽[1]𝜕𝒙̂ℎ[1] = −𝜕𝒉𝛼𝛽[1]𝜕𝒙̂𝑛[1] = −𝑠𝑖𝑛(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜) 𝑠𝑖𝑛(𝛼̂) + 𝑠𝑖𝑛 (𝜆𝑜)𝑐𝑜𝑠(𝛼̂)𝑠[𝑐𝑜𝑠(𝛽̂)]  (4-46) 

𝜕𝒉𝛼𝛽[1]𝜕𝒙̂ℎ[2] = −𝜕𝒉𝛼𝛽[1]𝜕𝒙̂𝑛[2] = −𝑠𝑖𝑛(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝑠𝑖𝑛(𝛼̂) − 𝑐𝑜𝑠(𝜆𝑜)𝑐𝑜𝑠(𝛼̂)𝑠[𝑐𝑜𝑠(𝛽̂)]  
 

𝜕𝒉𝛼𝛽[1]𝜕𝒙̂ℎ[3] = −𝜕𝒉𝛼𝛽[1]𝜕𝒙̂𝑛[3] = 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝛼̂)𝑠[𝑐𝑜𝑠(𝛽̂)]  
 

𝜕𝒉𝛼𝛽[2]𝜕𝒙̂ℎ[1] = −𝜕𝒉𝛼𝛽[2]𝜕𝒙̂𝑛[1] = −𝑠[𝑐𝑜𝑠(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜)] + 𝑠𝑖𝑛 (𝛽̂)∆𝑥𝑠2[𝑐𝑜𝑠(𝛽̂)]  
 

𝜕𝒉𝛼𝛽[2]𝜕𝒙̂ℎ[2] = −𝜕𝒉𝛼𝛽[2]𝜕𝒙̂𝑛[2] = −𝑠[𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜)] + 𝑠𝑖𝑛(𝛽̂)∆𝑦𝑠2[𝑐𝑜𝑠(𝛽̂)]  
 

𝜕𝒉𝛼𝛽[2]𝜕𝒙̂ℎ[3] = −𝜕𝒉𝛼𝛽[2]𝜕𝒙̂𝑛[3] = −𝑠[𝑠𝑖𝑛(𝜑𝑜)] + 𝑠𝑖𝑛(𝛽̂)∆𝑧𝑠2[𝑐𝑜𝑠(𝛽̂)]  
 

As a function of the changing system state, the vector function h, and its partial 

derivatives that make up the measurement matrix H, must be computed at each time step. 
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4.2.6.3 Measurement Noise 

The measurement noise matrix is a square matrix that expresses the variance of the 

measurements being applied to the filter. Again, the contents of the matrix vary based on the type 

of measurement being applied. Equation (4-47) defines the measurement noise matrix for a 

position measurement, (4-48) defines the matrix for a velocity measurement, and (4-49) provides 

the matrix for AOA/AOE measurements. 

𝑹𝑝𝑜𝑠 = 𝑹̃𝑟𝑛 (4-47) 

Where: 𝑹𝑝𝑜𝑠 = Measurement uncertainty for position measurements (3x3). 

 𝑹̃𝑟𝑛 = Navigation aid ECEF position covariance matrix (3x3). Refer to (4-10). 

 𝑹𝑣𝑒𝑙 = 𝑹̃𝑟̇𝑛 (4-48) 

Where: 𝑹𝑣𝑒𝑙 = Measurement uncertainty for velocity measurements (3x3). 

 𝑹̃𝑟̇𝑛 = Navigation aid ECEF velocity covariance matrix (3x3). Refer to (4-13). 

 𝑹𝛼𝛽 = [(𝜎̂𝛼𝑁68)2 00 (𝜎̂𝛽𝑁68)2] (4-49) 

Where: 𝑹𝛼𝛽 = Measurement uncertainty for AOA and AOE measurements (2x2).  

 (𝜎̂𝛼𝑁68)2 = Variance of navigation aid AOA measurement. Refer to (4-50).   

 (𝜎̂𝛽𝑁68)2
 = Variance of navigation aid AOE measurement. Refer to (4-50).  

4.2.6.3.1 Navigation Aid AOA/AOE Measurement Uncertainty 

The theoretical and empirical accuracy of AOA measurements from ADS-B data was 

discussed in Section 3.1.1. As described, Reck et al. determined that an AOA RMSE of 0.66° 

was achievable when the AOA was calculation was made from ADS-B capable aircraft operating 

at a variety of ranges [7]. Based on this empirical result, 0.7° has been selected as the AOA and 

AOE measurement uncertainty. The resulting AOA and AOE measurement variance is presented 

in (4-50). 
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(𝜎̂𝛼𝑁68)2 = (𝜎̂𝛽𝑁68)2 = (0.7 𝜋180)2
 (4-50) 

Where: (𝜎̂𝛼𝑁68)2  = Estimated variance of navigation aid AOA measurement in radians.  

 (𝜎̂𝛽𝑁68)2
 = Estimated variance of navigation aid AOE measurement in radians. 

4.2.6.4 Kalman Gain 

In keeping with the Schmidt-Kalman philosophy of compensating for the unobservable 

navigation aid bias states, the optimal EKF Kalman gain for use in the covariance update 

equations is computed per (2-25). The symbolic results of this expression are denoted in (4-51). 

The sub-optimal Kalman gain, described in Section 2.3.2, is then established for use in the state 

update equations as shown in (4-52). 

𝑲 = [  
 𝑲ℎ𝑲𝑛1⋮𝑲𝑛𝑚]  

 
 (4-51) 

Where: K = Optimal EKF Kalman gain, computed using (2-25). 

 𝑲ℎ = Kalman gain for the host vehicle. 

 𝑲𝑛𝑚 = Kalman gain for the mth navigation aid. 

  
= [𝑲𝑛𝑒𝑲𝑛𝑛] 

 𝑲𝑛𝑒 = Kalman gain for the essential navigation aid states. 

 𝑲𝑛𝑛 = Kalman gain for the nuisance navigation aid states. 

 𝑲𝑠 = 𝑲 | 𝑲𝑛𝑛 = 0 (4-52) 

4.2.7 Filter Initialization 

The navigation algorithm is dependent upon the ability to receive ADS-B data and its 

associated AOA/AOE information from multiple airborne navigation aids. Conceptually, the 

system does not require a-priori knowledge of the host vehicle position because suitable 

information is readily available to determine an initial estimate. Accordingly, the filter is 

initialized following the calculation of the initial host vehicle position estimate. Subsequently, 
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the filtering algorithm is used to simultaneously track the host vehicle position and the airborne 

navigation aids. The present section provides an overview of the process that is used to initialize 

the filter’s host vehicle state and the process that is used to initialize the system state for airborne 

navigation aids being tracked. 

4.2.7.1 Host Vehicle Initialization 

The host vehicle state is initialized when a complete data set has been received from two 

or more airborne navigation aids within the previous two seconds, and the angle created by the 

intersection of the measured lines of bearing from any pair of navigation aids to the host vehicle 

is in the range [20°, 160°]. This allowable AOI range is somewhat arbitrary and exists to ensure 

that a unique intersection can be computed from the lines of bearing. Recall from the spherical 

intersection description in Section 2.6.1.2.5 that an infinite number of intersections may exist 

when the point of intersection lies on the line between the two reference positions. When one 

also considers the uncertainty present in the AOA measurements, the uncertainty in the 

intersection problem becomes excessive as the point of intersection simply nears the line 

between the reference positions. This phenomenon is illustrated in Figure 4-1. 

The shaded region of Figure 4-1A shows that the region of uncertainty for a 90° AOI is a 

bounded trapezoidal area. In this figure, points P and Q represent the ADS-B transmitting 

aircraft, while point R represents the intersection derived from the AOA measurements. Figure 

4-1B illustrates that for a 25° AOI, the region of uncertainty takes on a bounded diamond shape 

with an extended tail. This region of uncertainty is much larger than the region of uncertainty for 

a 90° AOI. As one might expect, the region of uncertainty becomes unbounded as the AOI 

approaches 0°. This can be expressed mathematically as lim𝛾→0 𝜎𝑟𝑙(𝛾) = ∞. 
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Figure 4-1A: Region of Uncertainty for a 90° Angle 

of Intersection. 

Figure 4-1B: Region of Uncertainty for a 25° Angle 

of Intersection. 

Figure 4-1: Region of Position Uncertainty as a Function of Angle of Intersection. 

Figure 4-2 quantifies the empirical qualitative results presented in Figure 4-1 using the 

Ancker method that was described in Section 3.2.1. That is, Figure 4-2 presents the actual lateral 

position uncertainty as a function of the AOI; where both airborne navigation aids are assumed 

to be at the maximum 190 NM range (Section 2.1.6) and subject to an AOA uncertainty of 0.7° 

(Section 4.2.6.3.1). The results indicate that the lateral position uncertainty becomes asymptotic 

when the AOI drops below 10°. To avoid singularities and issues with sensitivity, the AOI limit 

of 20° has been selected. 
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Figure 4-2: Lateral Position Uncertainty as a Function of Angle of Intersection. 

4.2.7.1.1 Host Vehicle State Vector Initialization 

The initial position of the host vehicle is computed using the Spherical Great Circle 

Intersection equations described in Section 2.6.1.2.5 and the Spherical Altitude equations 

presented in Section 2.6.1.2.6. The inputs to these equations will be the two airborne navigation 

aid positions that satisfy the AOI constraint and whose AOI is nearest to 90°, the reciprocal of 

the corresponding AOA measurements, and the AOE to each navigation aid. This results in the 

3-dimensional host vehicle position expressed in geographic latitude/longitude coordinates. 

These results are then rotated into the ECEF frame using the methods presented in Section 

2.6.1.1.4. Once expressed in the ECEF frame, the values are directly assigned to the host vehicle 

state vector, with the velocity and acceleration states initialized to zero as shown in (4-53). 

𝒙ℎ0 = [𝑟̂ℎ𝑥 𝑟̂ℎ𝑦 𝑟̂ℎ𝑧 0 0 0 0 0 0]𝑇 (4-53) 

Where: 𝒙ℎ0 = Initial host vehicle aid state vector. 

 𝑟̂ℎ𝑥 = Estimated host vehicle ECEF position x coordinate. 

 𝑟̂ℎ𝑦 = Estimated host vehicle ECEF position y coordinate. 

 𝑟̂ℎ𝑧 = Estimated host vehicle ECEF position z coordinate. 
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4.2.7.1.2 Host Vehicle State Covariance Initialization 

The initial lateral variance of the host vehicle position is computed using the Ancker 

method detailed in Section 3.2.1. The inputs to this procedure are: the estimated host vehicle 

position, the two airborne navigation aid positions used to determine the host vehicle’s initial 

position, the airborne navigation aid lateral variance (augmented to account for latency), and the 

variance of the AOA measurements.  

As described in Section 4.2.7.1, the host vehicle initialization process requires that the 

positions used during initialization have been received in the previous two seconds. In addition 

to this two second latency, the ADS-B data itself is subject to a maximum of 0.6 seconds of 

latency (refer to Section 2.1.1.2.2). Finally, the navigation algorithm processing rate of 100 

milliseconds introduces an additional data latency. To account for the fact that the airborne 

navigation aid positions used in this calculation were not instantaneously received prior to the 

calculation, the navigation aid lateral position variance is augmented to account for the possible 

position latency described above. The position latency variances are based on the aircraft 

reported velocity and the median latency time.  This process is expressed in (4-54), noting that 

the resulting uncertainty is expressed as a lateral uncertainty in the NED frame, not in the ECEF 

frame. 
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(𝜎̂𝑟𝑛𝑙𝑁68)2 = (𝜎̃𝑟𝑛𝑙𝑁68)2 + (𝜎̂∆𝑡𝑟𝑁𝐸0𝑁68 )2
 (4-54) 

Where: (𝜎̂𝑟𝑛𝑙𝑁68)2
 = Latency compensated, navigation aid initial lateral position variance. 

 (𝜎̃𝑟𝑛𝑙𝑁68)2
 = Measured navigation aid lateral position variance. Refer to (4-8). 

 (𝜎̂∆𝑡𝑟𝑁𝐸0𝑁68 )2
 = Navigation aid lateral position latency compensation. 

  = (∆𝑡0)2 [(𝑟̃̇𝑛𝑁)2 + (𝑟̃̇𝑛𝐸)2] 
 ∆𝑡0 = 50th percentile position initialization measurement latency: 

50th percentile initialization delay 1.00 seconds 

50th percentile ADS-B transmit latency 0.20 seconds 

50th percentile navigation processing latency 0.05 seconds 

Total 1.25 seconds 
 

 𝑟̃̇𝑛𝑁 = ADS-B reported navigation aid velocity north. 

 𝑟̃̇𝑛𝐸 = ADS-B reported navigation aid velocity east. 

The Anker calculations are then used determine the host vehicle lateral position variance 

in an arbitrary X, Y frame. This process is expressed as a general function in (4-55). 

(𝝈̂𝑟ℎ𝑥,𝑦 𝑁68 )2 = 𝑓 [𝑟̂ℎ, 𝑟̂𝑛1 , 𝑟̂𝑛2 , (𝜎̂𝑟𝑛𝑙1𝑁68)2 , (𝜎̂𝑟𝑛𝑙2𝑁68)2 , (𝜎𝛼𝑁68)2 ]   (4-55) 

Where: (𝝈̂𝑟ℎ𝑥,𝑦 𝑁68 )2
 = Initial host vehicle lateral position variance in an arbitrary X,Y frame. 

 𝑟̂ℎ = Estimated host vehicle position in geographic coordinates. 

 𝑟̂𝑛1,2 = Estimated navigation aid m position in geographic coordinates. 

 (𝜎̂𝑟𝑛𝑙1,2𝑁68 )2
 = Estimated navigation aid m lateral position variance (4-54). 

 (𝜎𝛼𝑁68)2 = Angle of arrival measurement variance (4-50). 

The initial host vehicle lateral position uncertainty is then taken to be the maximum of 

the X, Y uncertainty values as shown in (4-56). This establishes a conservative, normally 

distributed, estimate of the host vehicle lateral position uncertainty. 
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(𝜎̂𝑟ℎ𝑙 𝑁68)2 = 𝑚𝑎𝑥 [(𝜎̂𝑟ℎ𝑥 𝑁68)2 (𝜎̂𝑟ℎ𝑦 𝑁68)2] (4-56) 

Where: (𝜎̂𝑟ℎ𝑙 𝑁68)2
 = Estimated variance of initial host vehicle lateral position.  

The initial vertical uncertainty for the host vehicle considers the vertical error incited by 

the AOE measurement, the navigation aid’s vertical position uncertainty, and the vertical error 

induced through horizontal coupling. This horizontal coupling error is an expression of the 

vertical error that is a direct result of the uncertainty in the host vehicle and navigation aid lateral 

position estimates. An expression for the initial host vehicle vertical uncertainty is given in 

(4-57), with the individual terms detailed in (4-58) through (4-60). 

 

  (𝜎̂𝑟ℎ𝑣𝑁68)2 = (𝜎̂𝑟ℎ𝑣𝛽𝑁68 )2 + (𝜎̂𝑟𝑛𝑣𝑁68)2 + (𝜎𝑟ℎ𝑣ℎ𝑐𝑁68 )2
 (4-57) 

Where: (𝜎̂𝑟ℎ𝑣𝑁68)2
 = Estimated variance of initial host vehicle vertical position. 

 (𝜎̂𝑟ℎ𝑣𝛽𝑁68 )2
 = Host vehicle vertical position variance due to AOE measurement error (4-58). 

 (𝜎̂𝑟𝑛𝑣𝑁68)2
 = Latency compensated, navigation aid vertical position variance (4-59). 

 (𝜎𝑟ℎ𝑣ℎ𝑐𝑁68 )2
 = Host vehicle vertical position variance due to horizontal coupling (4-60). 

 

   (𝜎̂𝑟ℎ𝑣𝛽𝑁68 )2 = 𝑠ℎ𝑛2 (𝜎̂𝛽𝑁68)2
 (4-58) 

Where:   (𝜎̂𝑟ℎ𝑣𝛽𝑁68 )2
 = Host vehicle vertical position variance due to AOE measurement error. 

 𝑠ℎ𝑛2  = Squared spherical distance from the host vehicle to the navigation aid. 

 (𝜎̂𝛽𝑁68)2
 = Angle of elevation measurement variance (4-50). 
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(𝜎̂𝑟𝑛𝑣𝑁68)2 = (𝜎̃𝑟𝑛𝑣𝑁68)2 + (𝜎̂∆𝑡𝑟𝐷0𝑁68 )2
 (4-59) 

Where: (𝜎̂𝑟𝑛𝑣𝑁68)2
 = Estimated, latency compensated, navigation aid vertical position variance. 

 (𝜎̃𝑟𝑛𝑣𝑁68)2
 = Measured navigation aid vertical position variance (4-9). 

 (𝜎̂∆𝑡𝑟𝐷0𝑁68 )2
 = Navigation aid vertical position latency compensation. 

  = (∆𝑡0)2(−𝑟̃̇𝑛𝑈)2
 

 ∆𝑡0 = 50th percentile position initialization measurement latency. Refer to (4-54). 

 𝑟̃̇𝑛𝑈 = ADS-B reported navigation aid velocity up. 

 

   (𝜎𝑟ℎ𝑣ℎ𝑐𝑁68 )2 = 𝑡𝑎𝑛2(𝛽̃) [(𝜎̂𝑟ℎ𝑙 𝑁68)2 + (𝜎̂𝑟𝑛𝑙𝑁68)2] (4-60) 

Where:   (𝜎𝑟ℎ𝑣ℎ𝑐𝑁68 )2
 = Host vehicle vertical position variance due to horizontal coupling error. 

 𝛽̃ = Measured angle of elevation from the host vehicle to the navigation aid. 

 (𝜎̂𝑟ℎ𝑙 𝑁68)2
 = Estimated variance of initial host vehicle lateral position. Refer to (4-56). 

 (𝜎̂𝑟𝑛𝑙𝑁68)2
 = Estimated variance of navigation aid lateral position. Refer to (4-54). 

The host vehicle lateral and vertical uncertainty values are then combined into an NED 

vector and rotated in to the ECEF frame using the familiar process shown in (4-61).  

 𝑷𝑟ℎ0 = 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹
(
   𝑑𝑖𝑎𝑔

[  
   (𝜎̂𝑟ℎ𝑙𝑁68)2
(𝜎̂𝑟ℎ𝑙𝑁68)2
(𝜎̂𝑟ℎ𝑣𝑁68)2]  

   
)
   𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹𝑇

 (4-61) 

Where: 𝑷𝑟ℎ0  = Estimated covariance of initial host vehicle position in ECEF (3x3). 

 𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹 = Coordinate conversion matrix from NED to ECEF = 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 𝑇
 

 𝑑𝑖𝑎𝑔 = Operator to express column vector as diagonal matrix. 

 (𝜎̂𝑟ℎ𝑙𝑁68)2
 =Estimated variance of initial host vehicle lateral position. Refer to (4-56) 

 (𝜎̂𝑟ℎ𝑣𝑁68)2
 =Estimated variance of initial host vehicle vertical position. Refer to (4-57). 
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Finally, the covariance values for the host vehicle states are established as indicated in 

(4-62). 

  𝑷ℎ0 = [𝑷𝑟ℎ0 0 00 𝑷𝑟̇ℎ0 00 0 𝑷𝑟̈ℎ0
] (4-62) 

Where: 𝑷ℎ0 = Initial host vehicle state covariance (9x9). 

 𝑷𝑟ℎ0  =Estimated covariance of initial host vehicle position in ECEF (3x3). (4-61) 

 𝑷𝑟̇ℎ0  =Estimated covariance of initial host vehicle velocity in ECEF (3x3). 

 

 = 𝑑𝑖𝑎𝑔 [(5.1444 𝑚/𝑠)2(5.1444 𝑚/𝑠)2(5.1444 𝑚/𝑠)2] 

 𝑷𝑟̈ℎ0  = Estimated covariance of initial host vehicle acceleration in ECEF (3x3). 

  = 0.1𝑷𝑟̇ℎ0  

4.2.7.2 Airborne Navigation Aid Initialization 

Prior to utilizing a newly detected airborne navigation aid in the filter, a complete set of 

ADS-B data must be received. This requires that at least one each of an airborne position 

message (Section 2.1.1.2.2), airborne velocity message (Section 2.1.1.2.3), and airborne 

operational status message (Section 2.1.1.2.4) be received from the ADS-B transmitting aircraft. 

Ideally, based on the message transmission rates detailed in Section 2.1.3, a complete ADS-B 

data set could be received within a 0.5-second window. However, due to the possibility of ADS-

B transmission collisions, a 2-second window is implemented to ensure that the ADS-B message 

set is not only complete, but also relatively current. 

Following host vehicle initialization and upon receipt of a complete and current ADS-B 

data set, the system state vector (Section 4.2.1) and state covariance matrix (Section 4.2.3) are 

expanded by 12 elements to accommodate the newly acquired navigation aid. 
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4.2.7.2.1 Airborne Navigation Aid State Vector Initialization 

The initial position and velocity elements of the new state vector elements are initialized 

to the position and velocity data received in the ADS-B message set. Recall that ADS-B position 

and velocity values are not presented in the ECEF frame and must be rotated into the ECEF 

frame using the techniques presented in Sections 4.2.4.1 and 4.2.4.2. In keeping with the 

Schmidt-Kalman filtering techniques, the state vector values for the position and velocity 

measurement bias states are initialized to zero. The ensuing initial state vector for an arbitrary 

navigation aid is given in (4-63). 

𝒙𝑛0 = [𝑟̃𝑛𝑥 𝑟̃𝑛𝑦 𝑟̃𝑛𝑧 𝑟̃̇𝑛𝑥 𝑟̃̇𝑛𝑦 𝑟̃̇𝑛𝑧 0 0 0 0 0 0]𝑇 (4-63) 

Where: 𝒙𝑛0 = Initial navigation aid state vector. 

 𝑟̃𝑛𝑥 = Measured navigation aid ECEF x coordinate. Refer to (4-4). 

 𝑟̃𝑛𝑦 = Measured navigation aid ECEF y coordinate. Refer to (4-5). 

 𝑟̃𝑛𝑧 = Measured navigation aid ECEF z coordinate. Refer to (4-6). 

 𝑟̃̇𝑛𝑥 = Measured navigation aid ECEF velocity x. Refer to (4-7). 

 𝑟̃̇𝑛𝑦 = Measured navigation aid ECEF velocity y. Refer to (4-7). 

 𝑟̃̇𝑛𝑧 = Measured navigation aid ECEF velocity z. Refer to (4-7). 

4.2.7.2.2 Airborne Navigation Aid State Covariance Initialization 

The initial airborne navigation aid state covariance matrix is set to the position and 

velocity uncertainty values received in the ADS-B message. This process is necessary to convert 

the ADS-B uncertainty values into the ECEF frame, to express the uncertainty values as 1-sigma, 

normally distributed variables, and to compensate for the initialization latency. The initial 

airborne navigation aid state covariance matrix is presented as (4-64).   
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𝑷𝑛0 =
[  
   
𝑷̂𝑟𝑛0 0 0 00 𝑹̃𝑟̇𝑛 0 00 0 4𝑷̂𝑟𝑛0 00 0 0 4𝑹̃𝑟̇𝑛]  

    (4-64) 

Where: 𝑷𝑛0 = Initial navigation aid state covariance. 

 𝑷̂𝑟𝑛0  = Estimated covariance of initial navigation aid position in ECEF (3x3). 

  = 𝑹̃𝑟𝑛 + 𝑷̂∆𝑡0  

 𝑹̃𝑟𝑛 = Navigation aid ECEF position measurement covariance (3x3). Refer to (4-10). 

 𝑹̃𝑟̇𝑛 = Navigation aid ECEF velocity measurement covariance (3x3). Refer to (4-13). 

 𝑷̂∆𝑡0 = Navigation aid initial position latency compensation matrix (3x3). 

 

 = (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)
(
  𝑑𝑖𝑎𝑔

[  
  (∆𝑡0)2 [(𝑟̃̇𝑛𝑁)2 + (𝑟̃̇𝑛𝐸)2](∆𝑡0)2 [(𝑟̃̇𝑛𝑁)2 + (𝑟̃̇𝑛𝐸)2](∆𝑡0)2(−𝑟̃̇𝑛𝑈)2 ]  

  
)
  (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹)𝑇

 

 (𝑪𝑁𝐸𝐷𝐸𝐶𝐸𝐹) = Coordinate conversion matrix from NED to ECEF. 

 ∆𝑡0 = Navigation aid latency for the initialization process. Refer to (4-54). 

 𝑟̃̇𝑛𝑁 = ADS-B reported navigation aid velocity north. 

 𝑟̃̇𝑛𝐸 = ADS-B reported navigation aid velocity east. 

 𝑟̃̇𝑛𝑈 = ADS-B reported navigation aid velocity up. 

4.2.8 Reset Navigation Aid Bias State Covariance on Accuracy Change 

Recall that the bias state covariance values are estimated as Gauss-Markov random 

stochastic processes using the Schmidt-Kalman philosophy. In this configuration, the bias states 

themselves are not estimated, but the effects of the bias uncertainty are accounted for in the 

covariance matrix through cross-correlation. The white-noise correlation time constants 

associated with the Gauss-Markov bias state estimates result in a slow response to changes in 

navigation aid reported accuracy. Therefore, the bias state covariance is reinitialized whenever 

the reported accuracy associated with a navigation aid changes. That is, when the NACp or GVA 

reported by a navigation aid changes, the navigation aid position bias covariance values are 
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reinitialized. Likewise when the NACv changes, the navigation aid velocity bias covariance 

values are reinitialized. The remainder of this section details these reinitializations. 

 The 12 x 12 covariance matrix associated with a particular navigation aid can be 

segmented as shown in (4-65). The 6 x 6 submatrix 𝑷𝑛𝛿 can be further sub-divided into the 3 x 3 

matrices as shown in (4-66). 

𝑷𝑛 = [ 𝑷𝑛𝑒 𝑷𝑛𝑒𝛿𝑷𝑛𝑒𝛿 𝑷𝑛𝛿 ] (4-65) 

Where: 𝑷𝑛𝑒 = Navigation aid essential state covariance matrix (6x6). 

 𝑷𝑛𝛿 = Navigation aid bias state covariance matrix (6x6). 

 𝑷𝑛𝑒𝛿 = Navigation aid covariance between the essential states and bias states (6x6). 

 

𝑷𝑛𝛿 = [𝑷𝑛𝛿𝑟 𝑷𝑛𝛿𝑟𝑟̇𝑷𝑛𝛿𝑟𝑟̇ 𝑷𝑛𝛿𝑟̇ ] (4-66) 

Where: 𝑷𝑛𝛿𝑟  = Navigation aid position bias state covariance matrix (3x3). 

 𝑷𝑛𝛿𝑟̇  = Navigation aid velocity bias state covariance matrix (3x3). 

 𝑷𝑛𝛿𝑟𝑟̇  = Navigation aid covariance between the position and velocity bias states (3x3). 

The following reinitializations occur when either the navigation aid reported NACp or 

GVA changes from its previous value: 

1. All off diagonal elements associated with the rows and columns of 𝑷𝑛𝛿𝑟  throughout the 

composed P matrix are set to zero. 

2. 𝑷𝑛𝛿𝑟  is set equal to 4 ∗ 𝑹𝑝𝑜𝑠 where 𝑹𝑝𝑜𝑠 is defined in (4-47). 

Similarly, the following reinitializations occur when the navigation aid reported NACv 

changes from its previous value: 

1. All off diagonal elements associated with the rows and columns of 𝑷𝑛𝛿𝑟̇  throughout the 

composed P matrix are set to zero. 

2. 𝑷𝑛𝛿𝑟̇  is set equal to 4 ∗ 𝑹𝑣𝑒𝑙 where 𝑹𝑣𝑒𝑙 is defined in (4-48). 
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4.2.9 Removing Airborne Navigation Aids from the Filter 

As an airborne navigation aid moves beyond the radio horizon of the host vehicle, or 

otherwise stops producing ADS-B transmission, the reception of ADS-B messages from that 

navigation aid will cease. When an ADS-B message has not been received from a navigation aid 

in the previous 20 seconds, the navigation aid is removed from the filter as discussed in Section 

4.1. Removal of a navigation aid from the filter requires that all corresponding state vector 

elements be removed and the state vector collapsed. Likewise, all corresponding rows and 

columns of the covariance matrix are removed and the matrix collapsed. 

4.2.10 Estimated Position Uncertainty 

The lateral and vertical EPU values for the host vehicle and for each tracked airborne 

navigation aid are established from the filter’s state covariance matrix. The lateral EPU is 

expressed as a Rayleigh random variable at the 95% containment level as shown in (4-67); while 

(4-68) provides the vertical EPU (VEPU) expressed as a Gaussian random variable, also at the 

95% containment level. Equation (4-69) provides the mechanization used to express the host 

vehicle’s ECEF state covariance values in the NED frame as required to carry out the 

calculations in (4-67) and (4-68). The final host vehicle lateral EPU is then smoothed using a 

first order low pass filter with a 60 second time constant. This filtering action applies only to 

decreasing EPU values, increases in EPU are applied instantaneously. This mechanization 

ensures that the final EPU is a conservative estimate of the position accuracy. 

A similar operation is performed for the navigation aid EPU calculations by making the 

appropriate substitution to utilize covariance matrix values associated with the particular 

navigation aid’s position estimate rather than the covariance values associated with the host 

vehicle’s position estimate. The final navigation aid EPU output is not filtered simply because 

this is not considered an essential output of the filter.  
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  𝜎̂ℎ𝑟𝑙𝑅95 = 2.4477√𝑚𝑎𝑥 [(𝜎̂ℎ𝑟𝑁𝑁68)2 (𝜎̂ℎ𝑟𝐸𝑁68)2] (4-67) 

Where: 𝜎̂ℎ𝑟𝑙𝑅95 = Lateral estimated position uncertainty for the host vehicle (Rayleigh 95%). 

 (𝝈̂ℎ𝑟𝑁𝐸𝐷𝑁68 )2
 = Host vehicle position variance vector in NED, computed in (4-69). 

 2.4477 = Statistical conversion from a Gaussian 68% to a Rayleigh 95% distribution. 

 

  𝜎̂ℎ𝑟𝑣𝑁95 = 1.96√(𝜎̂ℎ𝑟𝐷𝑁68)2
 (4-68) 

Where: 𝜎̂ℎ𝑟𝑣𝑅95 = Vertical estimated position uncertainty for the host vehicle (Gaussian 95%). 

 (𝝈̂ℎ𝑟𝑁𝐸𝐷𝑁68 )2
 = Host vehicle position variance vector in NED, computed in (4-69). 

 1.96 = Statistical conversion from a Gaussian 68% to a Gaussian 95% distribution. 

   𝑷𝑟ℎ𝑁𝐸𝐷 = (𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 )(𝑷𝑟ℎ)(𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷 )𝑇 (4-69) 

Where: 𝑷𝑟ℎ𝑁𝐸𝐷  = Host vehicle position covariance matrix in NED (3x3). 

 𝑪𝐸𝐶𝐸𝐹𝑁𝐸𝐷  = Coordinate conversion matrix from ECEF to NED. 

 𝑷𝑟ℎ  = Host vehicle position covariance in ECEF (3x3). 

 

 = [𝑷[1,1] 𝑷[1,2] 𝑷[1,3]𝑷[2,1] 𝑷[2,2] 𝑷[2,3]𝑷[3,1] 𝑷[3,2] 𝑷[3,3]] where P is the state covariance matrix. 

4.3 Algorithmic Process 

This section describes the algorithmic steps that have been implemented to compute the 

host vehicle position from received ADS-B data using the method described in Section 4.2. An 

overview of the process is provided in Figure 4-3. With respect to this figure, process flow is 

denoted by solid connecting arrows, while data flow is denoted with dashed connecting arrows. 

It is clear from Figure 4-3 that the algorithm is broken into three major processing steps that 

follow the classic paradigm of: Input Data, Process Data, and then Output Results. The main 

processing loop is periodic and configured to execute at a 10 Hz rate. 
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Figure 4-3: High Level Algorithmic Process. 

4.3.1 Input Function 

The Input function collects the received ADS-B data from shared memory and saves the 

information into a persistent one-dimensional array for use by the Process and Output functions. 

Each element of the array contains a record of data applicable to a particular navigation aid; 

Table 4-1 through Table 4-5 detail the elements of this record structure. It should be noted that in 

addition to providing storage for the received ADS-B data, this record also provides persistent 

storage for the navigation algorithm. As such, the input function does not populate every element 

in this data store. 

Due to the fact that the array is persistent, it must be searched each time new ADS-B data 

becomes available to determine if the navigation aid is already represented in the array. If the 

navigation aid already exists in the array, then the persistent data is overwritten by the newly 

received ADS-B data. If the navigation aid does not exist in the array, then the array is expanded 

to accommodate the newly acquired navigation aid.  

The Input function then assigns a validity indication to the navigation aid. A navigation 

aid is considered valid for use by the algorithm when at least one of each type of ADS-B 

message has been received, and the NACp, NACv, and GVA values are all non-zero. 
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During initial development and evaluation of the algorithm it was discovered that 

configuring the filter to utilize NACv values higher than one (velocity uncertainty less than 3 

meters/second) would occasionally cause the filter’s estimate of the navigation aid positions to 

diverge to the point of filter instability. To prevent this divergence, the algorithm has been 

configured to assume a NACv value of 1 for all navigation aids, regardless of the received NACv 

value. It is considered future work to diagnose and correct this issue. 

 

Table 4-1: Airborne Navigation Aid ADS-B Data Record. 

Variable Data Type Description 

adsbPos ADSBPositionMsgType Received ADS-B position data Table 4-2. 

adsbVel ADSBVelocityMsgType Received ADS-B velocity data Table 4-3. 

adsbStatus ADSBStatusMsgType Received ADS-B operational status data Table 4-4. 

filterIndex Integer Index to this navigation aid’s first state vector element. 

icao Integer This navigation aid’s ICAO address. 

lastRxTime Double The last time a message was received for this navigation 

aid. 

resetPosBias Boolean Indicates that the position bias states for this navigation 

aid need to be reset. 

resetVelBias Boolean Indicates that the velocity bias states for this navigation 

aid need to be reset. 

uncertainty EstimatedUncertaintyType Computed uncertainty information for this navigation aid 

Table 4-5. 

valid Boolean Indicates that the navigation aid is valid for use. 

 

 
Table 4-2: Airborne Navigation Aid ADS-B Position Message Data Record. 

Variable Data Type Description 

aoa Double Angle of arrival for this message. 

aoe Double Angle of elevation for this message. 

rxTime Double The time that this message was received. 

lat Double The received ADS-B position latitude. 

lon Double The received ADS-B position longitude. 

alt Double The received ADS-B position altitude. 
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Table 4-3: Airborne Navigation Aid ADS-B Velocity Message Data Record. 

Variable Data Type Description 

aoa Double Angle of arrival for this message. 

aoe Double Angle of elevation for this message. 

rxTime Double The time that this message was received. 

velE Double The received ADS-B east velocity. 

velN Double The received ADS-B north velocity. 

velU Double The received ADS-B vertical velocity. 

nacV Integer The received ADS-B NACv value. 

sigmaVel Double The 1σ normally distributed velocity uncertainty determined 

from the NACv value. 

 

 
Table 4-4: Airborne Navigation Aid ADS-B Operational Status Message Data Record. 

Variable Data Type Description 

aoa Double Angle of arrival for this message. 

aoe Double Angle of elevation for this message. 

rxTime Double The time that this message was received. 

nacP Integer The received ADS-B NACp value. 

gva Integer The received ADS-B GVA value. 

sigmaLateral Double The 1σ normally distributed lateral position uncertainty 

determined from the NACp value. 

sigmaVertical Double The 1σ normally distributed vertical position uncertainty 

determined from the GVA value. 

 

 
Table 4-5: Airborne Navigation Aid Estimated Uncertainty Data Record. 

Variable Data Type Description 

EPU Double The estimated lateral position uncertainty expressed as a 

95% containment Rayleigh random variable. 

EVU Double The estimated lateral velocity uncertainty expressed as a 

95% containment Rayleigh random variable. 

VEPU Double The estimated vertical position uncertainty expressed as a 

95% containment Gaussian random variable. 

VEPU Double The estimated vertical velocity uncertainty expressed as a 

95% containment Gaussian random variable. 

4.3.2 Process Function 

The Process function implements the EKF and associated operations detailed in Section 

4.2 and its subsections. A block diagram showing the process flow between the major 

subfunctions is given as Figure 4-4. Because the major subfunctions in Figure 4-4 closely 

implement the logic described in Section 4.2, with the exception of the Apply Measurements 

block, little additional detail is provided here.   
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Figure 4-4: Navigation Process High Level Overview. 

The Apply Measurements block implements the observation update portion of the EKF 

described in Section 4.2.6. As a germane portion of the filter, a block diagram of the process 

flow is provided in Figure 4-5. As shown in this figure, the Apply Measurements block loops 

over each valid navigation aid contained in the navigation aid array populated by the Input 

function (refer to Section 4.3.1) to determine if fresh ADS-B data has been received from the 

navigation aid. If fresh data is available, then the filter is examined to determine if the particular 

navigation aid is already a member of the filter. If it is not, then as described in Section 4.2.7.2, 

the filter is expanded to accommodate the new navigation aid. If the navigation aid is already 

included in the filter, then the fresh data is applied to filter using the hierarchy and techniques 

described in Section 4.2.6 
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Figure 4-5: Apply Measurement High Level Overview. 

4.3.3 Output Function 

The Output function assembles the computational results from the Process function, 

formats the data for publication, and saves the information to shared memory for use by external 

applications. The host vehicle data is published as a record containing the information given in 

Table 4-6. In addition to this data, a count of the number of navigation aids in use is also 

published. The navigation aid data is published as an array of records, where each array element 

contains the data record given in Table 4-6, populated with information specific to a particular 

navigation aid. 
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Table 4-6: Navigation Solution Output Data Record. 

Variable Data Type Description 

icao Integer The vehicle’s ICAO address. 

lat Double The latitude of the position estimate. 

lon Double The longitude of the position estimate. 

alt Double The altitude of the position estimate. 

velN Double The vehicle’s north velocity. 

velE Double The vehicle’s east velocity. 

velD Double The vehicle’s vertical velocity. 

EPU Double The estimated lateral position uncertainty 

expressed as a 95% containment Rayleigh 

random variable. 

EVU Double The estimated lateral velocity uncertainty 

expressed as a 95% containment Rayleigh 

random variable. 

VEPU Double The estimated vertical position uncertainty 

expressed as a 95% containment Gaussian 

random variable. 

VEPU Double The estimated vertical velocity uncertainty 

expressed as a 95% containment Gaussian 

random variable. 

valid Boolean Indicates if the vehicle’s navigation data is valid. 
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5.0 SIMULATION 

The method detailed in this paper represents a theoretical algorithmic approach to 

determine a host vehicle’s geodetic position based on AOA and AOE measurements of ADS-B 

data. Although both Reck’s and Faragher’s research have demonstrated the ability to determine 

AOA from ADS-B data, all analysis performed to validate this method has been conducted using 

simulations rather than real world data. To that end, a simulation was developed that emulates 

ADS-B capable aircraft to provide pseudo ADS-B data to the navigation algorithm. The term 

pseudo ADS-B data is used because the data content available from the simulation does not 

strictly follow the bit-level ADS-B protocol; however, the data is consistent in content, precision, 

and transmission rate. This method has been selected to emulate the data that would likely be 

provided by an ADS-B AOA/AOE receiver should one be constructed. 

The simulation consists of two separate software applications: an ADS-B simulation 

library and a test driver. These mutually dependent applications are the subject of the following 

two subsections. A demonstration of the simulation is provided in the final subsection of this 

topic. 

5.1 ADS-B Simulation Library 

The ADS-B simulation library is a software library that was developed in C# to simulate 

ADS-B capable aircraft. The simulation allows for the host vehicle and multiple airborne 

navigation aids to be configured, each with a user defined flight profile and corresponding 

navigation accuracy. Control of the simulation, and configuration of each aircraft’s flight profile, 

is accomplished through the use of an Application Program Interface (API) that can be called by 

the test harness. The exposed API commands are described in APPENDIX I. Once configured, 

the simulation interfaces provide access to the true position and velocity information for all 
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defined aircraft, as well as the AOA, AOE, and pseudo ADS-B data for those navigation aids 

that are considered to be in range of the host vehicle.  

When an aircraft is added to the simulation, a random nominal performance model is 

established for the aircraft. This nominal performance model uniquely describes the turn rate, 

rate of climb/descent, and acceleration/deceleration rate for the aircraft. The turn rate is drawn 

from a uniform distribution on the interval [135, 225] degrees per minute. Note that the range of 

turn rates is centered on the standard aviation turn rate of 180 degrees per minute. The nominal 

altitude rate is drawn from a uniform distribution on the interval [2000, 6000] feet per minute. 

Finally, the nominal acceleration rate is drawn from a uniform distribution on the interval [2.5, 

7.5] feet per second squared. When used, these nominal rates are further perturbed by additive 

Gaussian noise with a standard deviation of 10% of the nominal value for the acceleration and 

altitude rates, and a standard deviation of 5% of the nominal value for the turn rate.  

The ADS-B data provided by the simulation is also subject to various perturbations 

including: latency, bias, and Gaussian noise. Upon initialization of each simulated aircraft, a 

random latency value is selected from a uniform distribution over the range [-0.6, 0.2] seconds. 

This latency value emulates the ADS-B position latency described in Section 2.1.1.2.2. 

Accordingly, it remains fixed for the duration of the simulation run and is applied to all ADS-B 

position reports from that particular aircraft. 

An initial aircraft position and velocity bias is also drawn for each aircraft during 

initialization. The bias is drawn from a Rayleigh distribution with scale factor (mode) equal to 

the 1-sigma equivalent of the simulated aircraft’s defined NACp uncertainty (NACv for velocity 

bias). The direction of the bias is computed as the arc tangent as of the normally distributed 

constituent components used to generate the Rayleigh random variable. Refer to Section 2.5.2 for 
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an overview of the process by which a Rayleigh random variable is formed. To emulate an 

inflight change in GNSS accuracy due to a constellation change or other phenomena, a new bias 

is selected for each aircraft at a 900 second interval. In order to stagger the bias reselection 

between aircraft, the first bias reselection time is randomly drawn for each aircraft from a 

uniform distribution on the range [0, 900] seconds. 

In addition to bias, the reported position and velocity values are subject to additive, zero 

mean, uncorrelated, disturbances generated from the same distributions as the bias values. 

However, the standard deviation of the noise is limited to 10% of the defined 1-sigma equivalent 

of the NACp or NACv value. 

The AOA value reported by the simulation defines the true north referenced azimuth 

from the host vehicle to the navigation aid from which ADS-B data is being simulated. The AOA 

and AOE values are also disturbed by zero mean, uncorrelated, Gaussian noise with a standard 

deviations defined during simulation instantiation. Nominally, based on Reck’s empirical results 

described in the Section 3.1.1, a standard deviation of 0.7° is selected. 

Finally, the AOE provided by the simulation defines a locally level referenced elevation 

angle from the host vehicle to the navigation aid for which ADS-B data is being simulated. The 

AOE is also subject to zero mean, uncorrelated, Gaussian noise with a standard deviation defined 

during simulation instantiation. 

5.2 ADS-B Simulation Test Harness 

In an effort to enable black box testing of the ADS-B geodetic positioning algorithm, a 

test harness was written in MATLAB. The test harness provides simultaneous control over both 

the ADS-B simulation library and the navigation algorithm; it also serves as the interface 

between the two applications. The boundary between the simulation library and the algorithm 

under test ensures that the algorithm only operates on the ADS-B data received from the test 
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harness. A block diagram of the test harness, including its interface to the simulation library and 

navigation algorithm, is provided in Figure 5-1. Note that the pseudo ADS-B data is the only 

data input to the navigation algorithm.  

 
Figure 5-1: Top Level ADS-B Simulation Test Harness Block Diagram. 

Control of the simulation and configuration of each aircraft’s flight profile is 

accomplished via the use of two input configuration files, referred to as the simulation 

configuration file and the aircraft configuration file. The simulation configuration file is used to 

control the behavior of the simulation including: the length of the simulation run, the interval 

used to plot the results, the AOA and AOE uncertainty, and the types of real-time data plots to be 

generated. The aircraft configuration file is used to define the number of simulated aircraft, their 

respective flight plans, and their individual navigation accuracy. The aircraft configuration file is 

the primary customer of the simulation library’s API described in APPENDIX I.  

5.3 Simulation Demonstration 

In order to provide an initial demonstration of the operation of the simulation, and its 

various perturbations, a comparison between the simulated true lateral position and the ADS-B 

reported lateral position for an arbitrary airborne navigation aid is presented as Figure 5-2. 
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Likewise, a comparison between the simulated true vertical position and the ADS-B reported 

vertical position for an arbitrary navigation aid is given in Figure 5-3. In order to emphasize the 

magnitude of the position errors, a NACp value of 2 and a GVA value of 1 were selected for this 

demonstration. It is clear from these plots that the aircraft is following the defined flight profile 

and that position noise and bias are both present. Also evident in these plots are several changes 

in the magnitude of the position biases. These plots provide a level of confidence that the 

simulation is operating as expected. Additional validation of the simulation is included in the 

analysis of the algorithm. This is done to confirm that the simulation provided ADS-B data that 

was consistent with the accuracy level configured for the particular test. 

 
Figure 5-2: Simulated ADS-B Lateral Position Error with NACp = 2 (EPU < 4 NM) to Emphasize 

Position Bias Changes. 
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Figure 5-3: Simulated ADS-B Vertical Position Error with GVA = 1 (Altitude Error < 150 M) to 

Emphasize Position Bias Changes. 



 

160 

6.0 TEST METHOD AND EVALUATION CRITERIA 

The algorithmic method described in this paper presents an unproven approach to 

geodetic positioning that is highly dependent on navigation aid availability, accuracy, and 

geometry relative to the host vehicle. Because of these limitations, there are no clear or 

predefined expectations for the performance or accuracy of the algorithm. Therefore, the 

accuracy of the geodetic positioning algorithm was evaluated by comparing the lateral EPU 

output by the algorithm against the measured radial position error (RPE) and the measured 

position uncertainty (MPU). Similar comparisons were made in the vertical dimensions between 

the vertical EPU (VEPU), vertical position error (VPE) and vertical MPU (VMPU). 

A nearly infinite number of test scenarios could be derived to evaluate the accuracy of the 

navigation algorithm; however, as an initial assessment of a somewhat unique navigation 

solution, the test cases selected for this analysis were limited to those that represent nominal 

conditions. Nominal conditions are those cases where an adequate number of airborne navigation 

aids are available, the navigation aids are reporting positions whose errors are within the bounds 

of their reported uncertainty, and the navigation aids are located to provide a favorable geometry. 

The accuracy of the ADS-B geodetic positioning algorithm was then evaluated by performing a 

series of Monte-Carlo tests whose inputs spanned the range of nominal conditions.  

Each of the Monte-Carlo tests was composed of a 50-run ensemble, with each run having 

a duration of 3600 seconds. Each of the 50-runs for a given Monte-Carlo test utilized a different 

seed for the random number generators utilized by the simulation. This ensured that the inputs to 

the algorithm under test varied between each of the runs in the ensemble. Unless otherwise 

specified, the lateral flight profile for the host vehicle and for all navigation aids was as shown in 

Figure 6-1. Similarly, the default vertical profile for the host vehicle and the airborne navigation 

aids is given in Figure 6-2. Every 5 seconds during each iteration of the Monte-Carlo tests, 
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pertinent data output by the algorithm was stored to allow offline evaluation of the filter’s 

performance.  

In an effort to demonstrate the overall capability of the algorithm with a manageable 

number of test scenarios, three test philosophies were devised:  

1. Varying number of navigation aids with predefined accuracy and flight paths. 

2. Random navigation aid accuracy and flight paths. 

3. Sparse parametric analysis. 

The details of these test scenarios are provided in the remaining subsections of the 

present section. The outcome of each scenario is presented in the corresponding subsection of 

Section 7.0. 

 
Figure 6-1: Simulated Lateral Flight Profile. Host Vehicle Path is in Red, Airborne Navigation Aid 

Paths are Numbered and in Cyan. Asterisks Indicate the Starting Position, with the Arrow 

Denoting the Initial Direction of Travel. 

 



 

162 

 
Figure 6-2: Simulated Vertical Flight Profile. Host Vehicle Path is in Red, Airborne Navigation Aid 

Paths are Numbered and in Cyan. 

6.1 Varying Number of Airborne Navigation Aids Test Scenario 

This test examined numerous capabilities of the algorithm in a single scenario. First, this 

scenario evaluated the algorithm’s ability to self-initialize when a suitable navigation aid pair 

became available. Next, this scenario examined the algorithm’s ability incorporate new 

navigation aids into the filter as they became available, and to remove navigation aids from the 

filter when they became invalid. Finally this scenario also allowed for evaluation of the 

algorithm’s accuracy when exposed to varying numbers of navigation aids. This scenario was 

repeated three times, with different navigation aid accuracy levels used in each test. This allowed 

the performance of the algorithm to be examined as navigation aid accuracy diminished. 



 

163 

For this scenario, AOA and AOE uncertainties of 0.7° were selected; where this selection 

was based on Reck’s work described in Section 3.1.1. Both the host vehicle and all navigation 

aids began in motion, following the flight profiles of Figure 6-1 and Figure 6-2. Initially, there 

were no navigation aids available to the algorithm, then at fixed and predetermined times, the 

availability of pairs of navigation aids was altered to simulate the detection of new navigation 

aids and/or the loss of existing navigation aids. Table 6-1 provides a listing of the available 

navigation aids at each inflection point during the test.  

Table 6-1: Summary of Navigation Aid Availability Test Scenario 1. 

Time [sec] Navigation Aid Availability 

0 None available 
100 1 & 2 available 

600 1, 2, 3, 4 available 
1100 1, 2, 3, 4, 5, 6 available 
1600 1, 2, 3, 4, 5, 6, 7, 8 available 

2100 3, 4, 5, 6, 7, 8 available 
2600 5, 6, 7, 8 available 
3100 7 & 8 available 

As stated in the introduction of the present section, this Monte-Carlo scenario was 

repeated three times, each with a different navigation aid accuracy as detailed in Table 6-2. The 

median and minimum accuracy values determined from the ADS-B accuracy survey described in 

Section 2.1.7 led to the selection of the accuracy values for test case one and two. Test case three 

was selected as a robustness scenario to evaluate the algorithm given nearly worse case inputs. 

The results for this series of Monte-Carlo tests are presented in Section 7.1. 

Table 6-2: Navigation Aid Accuracy Settings for Monte-Carlo Testing. 

Test Case NACp NACv GVA 

1 10 = (𝜎𝑟𝑙𝑅95 < 10 𝑚)  1 = (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 2 = (𝜎𝑟𝑣𝑁95 ≤ 45 𝑚) 

2   6 = (𝜎𝑟𝑙𝑅95 < 0.3 𝑁𝑀) 1 = (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 = (𝜎𝑟𝑣𝑁95 ≤ 150 𝑚) 

3   2 = (𝜎𝑟𝑙𝑅95 < 4.0 𝑁𝑀) 1 = (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 = (𝜎𝑟𝑣𝑁95 ≤ 150 𝑚) 
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6.2 Random Navigation Aid Test Scenario 

The intent of this test case was to evaluate the behavior of the algorithm to random 

inputs. In this Monte-Carlo test case, the host vehicle began in flight and traveled the host 

vehicle paths given in Figure 6-1 and Figure 6-2. Instead of utilizing the eight navigation aids 

shown in Figure 6-1 and Figure 6-2, ten navigation aids were randomly configured. Each of the 

ten navigation aids was initialized to a uniformly random latitude in the range [N43.0°, N47.5°], 

and a uniformly random longitude in the range [W82.0°, W87.0°]. The initial altitude of each 

navigation aid was drawn from a uniform distribution on the range [0, 9144] meters; while the 

initial speed was drawn from a uniform distribution over the range [100, 400] knots. Each 

navigation aid was programed to fly a flight path of ten randomly selected waypoints over the 

uniform latitude/longitude ranges given above. For every third waypoint, a new altitude and 

speed were selected based on the uniform altitude and speed ranges previous provided. Finally, 

the NACp, NACv, and GVA were all drawn from uniform integer distributions over the intervals 

[8, 11], [1, 4], and [1, 3] respectively. These accuracy values are based on those that could be 

expected to be received from actual ADS-B capable aircraft, and are justified by the ADS-B 

accuracy survey results presented in Section 2.1.7. Finally, 0.7° AOA and AOE uncertainty were 

selected for this test scenario. The results of this random test are provided in Section 7.2. 

6.3 Parametric Test Scenario 

The purpose of this series of tests was to systematically evaluate the performance of the 

filter across a wide range of possible input conditions. To accomplish this, a series of Monte-

Carlo tests was performed where one parameter was altered between each test. The altered 

parameters included: number of navigation aids, AOA/AOE uncertainty, and navigation aid 

accuracy. Table 6-3 provides a listing of the input conditions used for each sub-test. The 

‘Navaids’ column of this table indicates the navigation aid numbers from Figure 6-1 and Figure 
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6-2 that were used. These navigation aids are available from the beginning of the test, and 

remained available throughout. 

Table 6-3: Input Conditions for Parametric Monte-Carlo Testing. 

Test Navaids AOA Sigma NACp NACv GVA 

1 1-8 6.0° 10 (𝜎𝑟𝑙𝑅95 < 10 𝑚)  1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 2 (𝜎𝑟𝑣𝑁95 ≤ 150 𝑚) 

2 1-8 0.7° 10 (𝜎𝑟𝑙𝑅95 < 10 𝑚)  1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 2 (𝜎𝑟𝑣𝑁95 ≤ 150 𝑚) 

3 1-8 0.7°   6 (𝜎𝑟𝑙𝑅95 < 0.3 𝑁𝑀) 1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 (𝜎𝑟𝑣𝑁95 ≤ 45 𝑚) 

4 1-8 0.7°   2 (𝜎𝑟𝑙𝑅95 < 4.0 𝑁𝑀) 1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 (𝜎𝑟𝑣𝑁95 ≤ 45 𝑚) 

5 1-4 0.7° 10 (𝜎𝑟𝑙𝑅95 < 10 𝑚)  1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 2 (𝜎𝑟𝑣𝑁95 ≤ 150 𝑚) 

6 1-4 0.7°   6 (𝜎𝑟𝑙𝑅95 < 0.3 𝑁𝑀) 1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 (𝜎𝑟𝑣𝑁95 ≤ 45 𝑚) 

7 1-4 0.7°   2 (𝜎𝑟𝑙𝑅95 < 4.0 𝑁𝑀) 1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 (𝜎𝑟𝑣𝑁95 ≤ 45 𝑚) 

8 1-2 0.7° 10 (𝜎𝑟𝑙𝑅95 < 10 𝑚)  1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 2 (𝜎𝑟𝑣𝑁95 ≤ 150 𝑚) 

9 1-2 0.7°   6 (𝜎𝑟𝑙𝑅95 < 0.3 𝑁𝑀) 1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 (𝜎𝑟𝑣𝑁95 ≤ 45 𝑚) 

10 1-2 0.7°   2 (𝜎𝑟𝑙𝑅95 < 4.0 𝑁𝑀) 1 (𝜎𝑟̇𝑅95 < 10 𝑚/𝑠) 1 (𝜎𝑟𝑣𝑁95 ≤ 45 𝑚) 

Although this systematic approach was crucial for filter tuning, it does little to 

demonstrate the capability of the filter beyond that which could be gleamed from the previous 

test scenarios. Because of this, and due to the large number of parametric test cases, a 

comprehensive analysis of the results was not provided. Instead, key statistics from these tests 

are presented in Section 7.3, with the detailed supporting data plots available in APPENDIX J. 
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7.0 RESULTS 

In addition to presenting the results of the Monte-Carlo test scenarios described in 

Section 6.0, this section also provides some basic plots to demonstrate the operation of the 

algorithm during an arbitrary individual flight. The ensuing analysis refers to the abbreviations 

EPU, RPE, MPU, VEPU, VPE, and VMPU liberally; as a convenience and easy reference, they 

are explicitly defined here: 

 Estimated Position Uncertainty (EPU) – The radius of a circle, centered on the reported 

lateral position, where the probability of the actual position lying inside the circle is 95% 

[1]. EPU is computed by the algorithm as an indication of the accuracy of the host 

vehicle position estimate. 

 Radial Position Error (RPE) – The magnitude of the error between the reported lateral 

position and the true position. This is a two-dimensional measurement that is assumed to 

follow a Rayleigh distribution. 

 Measured Position Uncertainty (MPU) – Calculated lateral position uncertainty based on 

the mode of the measured RPE, adjusted to the 95% containment level using the 

conversion constant defined in (2-65). Given an infinite number of samples, the EPU and 

MPU are expected to converge. 

 Vertical Estimated Position Uncertainty (VEPU) – One half the distance of a line, 

centered on the reported vertical position, where the probability of the actual vertical 

position lying on the line is 95%.  

 Vertical Position Error (VPE) – The difference between the reported and true vertical 

positions. This is a one-dimensional measurement that is assumed to follow a Gaussian 

distribution. 
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 Vertical Measured Position Uncertainty (VMPU) – Vertical position uncertainty based on 

the standard deviation of the measured VPE, adjusted to the 95% containment level using 

the conversion constant defined in (2-54). Given an infinite number of samples, the 

VEPU and VMPU are expected to converge. 

Before presenting the aggregate results of the Monte-Carlo test scenarios that were 

described in Section 6.0, a couple of samples of individual (rather than Monte-Carlo) simulation 

runs are presented to demonstrate the basic initialization and operation of the algorithm. 

Although there are no quantifiable performance or accuracy expectations for this algorithm, it is 

generally expected that the reported position will initialize to within a reasonable proximity of 

the true host vehicle position, and will follow the true path of the vehicle without significant 

discontinuities, even when the host vehicle undergoes a change in state. To this end, Figure 7-1 

provides a sample of an arbitrary initial position error, while Figure 7-2 provides a comparison 

between the true host vehicle position and the reported host vehicle position as the vehicle 

encountered a turn. These plots were configured for a one second sample rate to more faithfully 

capture the behavior during these interesting periods.  

Figure 7-1 shows that the initial position estimate was reasonable, with an initial error on 

the order of 1,600 meters, followed by rapid convergence to the true position within 15 seconds. 

Figure 7-2 demonstrates that the reported position tracked the true position through a turn, 

without significant divergence from the true position of the vehicle.  
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Figure 7-1: Host Vehicle Lateral Position Initialization and Lateral Path. 

Red Trace is the true position, Black scatter is the filter’s estimate of the vehicle’s position. 

 
Figure 7-2: Host Vehicle Lateral Position During a Turn. 

Red Trace is the true position, Black scatter is the filter’s estimate of the vehicle’s position. 

Figure 7-3 gives the estimated lateral position, true position, EPU, and RPE for the entire 

flight that was used to generate Figure 7-1 and Figure 7-2. Figure 7-3A provides a comparison 

between the estimated lateral position and the true lateral position of the host vehicle. The 

information in this figure suggests that the lateral position estimated by the filter tracks the true 

position of the host vehicle reasonably well. Figure 7-3B quantifies this assertion by providing 
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the EPU and RPE. As expected from a position fixing algorithm that does not derive its position 

estimates from onboard accelerometers, the RPE exhibits significant variation from time step to 

time step. However, the EPU generally contains the RPE, indicating that the filter is generating a 

reasonable estimate of its lateral position uncertainty. For this run, the steady state EPU was on 

the order of 650 meters, while the RPE mode was approximately 275 meters. These values are 

more than sufficient for non-precision airborne navigation. 

  
Figure 7-3A: Lateral Position Estimate (black) versus 

True Lateral Path (red). 

Figure 7-3B: Radial Position Error (orange) and 

Estimated Position Uncertainty (red). 

Figure 7-3: Host Vehicle Lateral Position Estimate versus True Path, Radial Position Error, and 

Estimated Position Uncertainty. 

The estimated vertical position was compared with the true vertical position for this flight 

as shown in Figure 7-4A. As in the lateral case, the vertical position estimated by the filter tracks 

to the true vertical position with little mean divergence. That is, the mean of the error is 

approximately zero. Figure 7-4B validates this by providing the VEPU and VPE. It is clear from 

this plot that the mean error was near zero, while the mean VEPU was on the order of 350 

meters. Again, these values would be adequate for non-precision navigation. 
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Figure 7-4A: Vertical Position Estimate (black) versus 

True Vertical Path (red). 

Figure 7-4B: Vertical Position Error (orange) and 

Vertical Estimated Position Uncertainty (red). 

Figure 7-4: Host Vehicle Vertical Position Estimate versus True Path, Vertical Position Error, and 

Vertical Estimated Position Uncertainty. 

The Monte-Carlo test result analysis presented in the following subsections are numbered 

in such a manner as to correspond to the Section 6.0 subsection number in which the test was 

described. That is, the results for the test scenario described in Section 6.1 are presented in 

Section 7.1.  

For the Variable Navigation Aid and Random Navigation Aid test scenarios, the results 

for each test case are presented in a series of eight data plots. These plots provide both 

instantaneous data and summary statistics (mean, mode, etc.). Unless otherwise specified, these 

statistics are computed at each time step, across all 50 runs. That is, the statistic computed at 

each time step has a sample size of at least 50, as illustrated in Figure 7-5. When the statistics are 

computed for navigation aids, the contribution from each valid navigation aid is considered in 

the calculation. For example, the RPE mode calculation for a test scenario with four valid 

navigation aids, taken at a given time step, would include 200 samples (50 Monte-Carlo runs 

times four navigation aids).  
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Figure 7-5: Data Statistic Calculations at Each Time Step, Across the 50 Monte-Carlo Runs. 

For brevity and consistency, the purpose, content, and color encoding for each of the 

eight basic plots is described here:    

1. Host Vehicle EPU vs RPE – The purpose of this plot is to evaluate the accuracy of 

the filter’s host vehicle lateral position estimate. The blue scatter points represent the 

instantaneous host vehicle RPE. The red trace provides the mean of the host vehicle 

EPU data computed by the filter. The green trace is the Rayleigh mode computed 

from the RPE data. Finally, the orange trace provides the MPU computed from the 

RPE mode.  

2. Navigation Aid Reported EPU vs RPE – The purpose of this plot is to validate that 

the ADS-B simulation is providing navigation aid lateral position data that is biased 

and perturbed in a manner that coincides with the selected NACp value. This ensures 

that the algorithm is being provided realistic lateral inputs. The red trace shows the 

EPU corresponding to the programmed NACp value. The blue scatter points denote 

the instantaneous reported navigation aid RPE for all configured navigation aids. The 

green trace is the Rayleigh mode computed from the instantaneous RPE data. 

Finally, the orange trace is the MPU computed from the RPE mode.  
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3. Navigation Aid Filtered EPU vs RPE – This plot demonstrates the algorithm’s 

ability to filter and track the lateral ADS-B navigation aid data provided to the filter. 

The blue scatter points denote the instantaneous filtered navigation aid RPE for all 

configured navigation aids that are in range. The red trace shows the mean of all 

valid navigation aid EPUs calculated by the filter. The green trace is the Rayleigh 

mode computed from the RPE data. Finally, the orange trace is the MPU computed 

from the RPE mode. 

4. Navigation Aid Mean Reported RPE vs Filtered RPE – This plot presents the 

mean and standard deviation for both the reported and filtered navigation aid RPE. 

This is provided in an effort to validate that the filter is either improving, or at least 

not degrading, the reported lateral position data. The blue trace provides the mean 

reported RPE, while the cyan trace is the standard deviation of the reported RPE. The 

red trace denotes the mean filtered RPE, with the magenta trace indicating the 

standard deviation of the filtered RPE. 

5. Host Vehicle VEPU vs VPE – This plot is used to evaluate the accuracy of the 

filter’s host vehicle vertical position estimate. The blue scatter points denote the 

instantaneous host vehicle VPE. The red trace is the mean of the host vehicle VEPU 

data computed by the filter. The green trace is the mean VPE, while the orange trace 

is the VMPU computed from the standard deviation of the VPE data. 

6. Navigation Aid Reported Vertical EPU vs VPE – This plot is used to validate that 

the ADS-B simulation is providing navigation aid vertical position data that is biased 

and perturbed in a manner that is consistent with the selected GVA value. This 

ensures that the algorithm is being provided realistic vertical inputs. The red trace 
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shows the VEPU corresponding to the programmed GVA value. The blue scatter 

points denote the instantaneous reported navigation aid VPE for all configured 

navigation aids. The green trace is the mean VPE value computed at each time step. 

Finally, the orange trace is the VMPU computed from the standard deviation of the 

VPE data. 

7. Navigation Aid Filtered Vertical EPU vs RPE – This plot illustrates the 

algorithm’s ability to filter and track the vertical ADS-B navigation aid data provided 

to the filter. The blue scatter points represent the instantaneous filtered navigation aid 

VPE for all configured navigation aids that are in range. The red trace provides the 

mean of all valid navigation aid VEPUs calculated by the filter. The green trace is 

the mean VPE value computed at each time step. Finally, the orange trace is the 

VMPU computed from the standard deviation of the VPE data. 

8. Navigation Aid Mean Reported VPE vs Filtered VPE – This plot presents the 

mean and standard deviation for both the reported and filtered navigation aid VPE. 

This validates that the filter is either improving, or at least not degrading, the 

reported vertical position data. The blue trace provides the mean reported VPE, while 

the cyan trace is the standard deviation of the reported VPE. The red trace denotes 

the mean filtered VPE, with the magenta trace showing the standard deviation of the 

filtered VPE. 

When these plots are generated for a test case that is configured to utilize a varying 

number of navigation aids, vertical dashed separators are including as overlay on the plot to 

denote the number of navigation aids that were in use during a given time period.  
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As previously stated, there is no defined accuracy goal for this algorithm, but there are 

general expectations for the accuracy estimated provided by the filter. Because the EPU (VEPU) 

reflects a 95% containment level, the general expectation is that approximately 95% of all 

instantaneous RPE (VPE) values will fall below the EPU (VEPU) value. The exact measured 

containment level is provided in the title of each EPU (VEPU) plot. Because the MPU (VMPU) 

is a statistic computed across a finite sample size, it is not expected to identically equal the EPU 

(VEPU), but the MPU (VMPU) and the EPU (VEPU) statistics should be of similar magnitude. 

It is further expected that VPE values will exhibit a mean near zero. This expectation is not 

levied on RPE values because the RPE is a two-dimensional (radial) value. Finally, the 

expectation is that the navigation aid filtered positions will exhibit accuracy similar to that 

reported in the ADS-B data set. 

7.1 Varying Number of Airborne Navigation Aids Test Results 

This section presents the results of the Varying Number of Airborne Navigation Aids 

Test Scenario described in Section 6.1. As detailed in Section 6.1, the test was repeated three 

times with different navigation aid accuracy characteristics used for each test; accordingly, the 

results are presented in the three subsequent subsections. 

7.1.1 Test Case 1 – NACp 10, GVA 2 

The present section presents the results observed during Test Case 1 of the Varying 

Number of Airborne Navigation Aids test. 

7.1.1.1 Filtered Lateral Performance for the Host Vehicle 

The host vehicle lateral performance observed during Test Case 1 is shown in Figure 7-6.  

Recall that there were no navigation aids available to the algorithm for the first 100 seconds of 

the flight, upon which time navigation aids 1 and 2 of Figure 6-1 became available. Once this 
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navigation aid pair was available, the filter self-initialized its position and uncertainty using the 

methods described in Section 4.2.7. 

It is clear from Figure 7-6 that the lateral accuracy of the algorithm – reflected in both the 

EPU and RPE – is a function of the number of navigation aids that are available to the filter. 

Distinct step changes in the EPU are evident when the number of available navigation aids 

changes, with the minimum EPU of 511 meters occurring when eight navigation aids were in 

use. Likewise, the minimum observed RPE mode of 148 meters occurred when the full 

complement of navigation aids were available; while the maximum RPE mode of 1,902 meters 

occurred during initialization. The mean of the EPU was 1,355 meters, and the mean of the RPE 

mode was 367 meters. 

 
Figure 7-6: Host Vehicle Lateral Performance for the Varying Number of Navigation Aids Test 

with Navigation Aid Accuracies Setting of NACp 10 and GVA 2. 
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The more subtle effect of navigation aid geometry relative to the host vehicle is also 

evident in Figure 7-6. Two navigation aids are available in the intervals (100, 600] and (3100, 

3600]; however, the mode of the RPE during the first interval was on the order of 900 meters, 

while the mode of the RPE during the second interval was on the order of 300 meters. There are 

two main causes for this difference in accuracy: filter convergence and navigation aid geometry 

relative to the host vehicle. 

The filter covariance matrix is intentionally initialized to conservative values. This 

ensures that the filter is initially pessimistic about its own state, initially resulting in a heavy 

weighting of measured data. This pessimism persists for a minute or more following 

initialization. During this time, the filter is ill equipped to reject excessive measurement noise, 

resulting in a somewhat less accurate solution until the filter stabilizes.  

The primary cause of the accuracy improvement in the second interval with two 

navigation aids was the geometry of the navigation aids relative to the host vehicle. During the 

first interval, the navigation aids were on the order of 270 kilometers from the host vehicle, and 

their AOA measurements over the interval result in an average AOI with the host vehicle of 

approximately 34°. This constitutes a usable, but less than ideal geometry. During the second 

interval, the navigation aids were roughly 130 kilometers away, and had an average AOI of 93°. 

Because the navigation aids were closer to the host vehicle, and the AOI was nearly at the ideal 

AOI of 90°, the host vehicle position uncertainty was significantly lower over the second 

interval, even though both intervals utilized the same number of navigation aids.  

By definition, the EPU is expected to represent a 95% probability of containing the actual 

position. The results indicate that the mean EPU contained the 97.9% of all observed RPE. As 

expected, the mean EPU completely contained the mode of the RPE for this sample of 50 runs. 
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Also of note, the mean EPU was of similar magnitude as the MPU and contained the MPU 

except for a few transient cases. This is significant because the MPU is taken to be the best 

estimate of the true position uncertainty because it is calculated from the measured data. Ideally, 

in the limit as the number of runs in the Monte-Carlo test approaches infinity, the EPU and MPU 

would converge. These results, along with the measured 97.9% RPE containment, indicate that 

the filter’s estimate of its lateral position uncertainty was conservative. 

7.1.1.2 Characteristics of the Simulated Navigation Aid Lateral ADS-B Data 

Figure 7-7 shows the instantaneous RPE, the Rayleigh mode of the RPE, the programed 

EPU, and the MPU of the lateral ADS-B data that produced by the simulation and provided as 

input to the filter. The primary takeaway from this graph is that the simulation was providing 

random lateral position inputs to the algorithm, as evident by the blue scatter points. Of 

secondary note, are that these random inputs were somewhat bounded by the NACp selected for 

this test case. 

For this scenario, a NACp value of 10 was chosen, which according to Table 2-6, 

corresponds to a 95% lateral position uncertainty (EPU) of 10 meters. Accordingly, one would 

expect an MPU on the order of 10 meters as well, with a mean RPE mode near 4.1 meters. 

However, Figure 7-7 indicates that the mean MPU was on the order of 50 meters, while the mean 

RPE mode was 21 meters. This resulted in the EPU containing only 20.6% of the RPE samples, 

instead of the expected 95%.  
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Figure 7-7: ADS-B Reported Navigation Aid Lateral Performance for the Varying Number of 

Navigation Aids Test with Navigation Aid Accuracy Settings of NACp 10 and GVA 2. 

This seemingly excessive error is expected for navigation aids with large NACp values 

(low position uncertainty). This is because the navigation aid accuracy is computed by the 

navigation aid’s onboard sensors and is reflective of the accuracy at the time of calculation. 

However, as described in Section 2.1.1.2.2, this navigation solution is then subject to an ADS-B 

transmission latency of up to 0.6 seconds. Given the speed of the airborne navigation aids, the 

distance traveled during the ADS-B transmission latency period can exceed the navigation aid’s 

reported accuracy, causing the reported lateral position to appear to have more error than would 

otherwise be expected by the reported EPU. In other words, for highly accurate navigation aids, 

ADS-B latency is the dominant factor in navigation aid lateral position errors.  
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After considering the effects of ADS-B transmission latency, these observations suggest 

that the simulation was providing random lateral position reports that correspond to the 

programmed NACp 10 value. 

7.1.1.3 Filtered Lateral Performance for the Tracked Navigation Aids 

A summary graph of the filter’s performance in tracking the lateral position of the 

airborne navigation aids is presented in Figure 7-8. The average EPU was 88.9 meters, the 

average RPE mode was 25.5 meters, and the average MPU was 97.8 meters. This figure shows 

that the filter inflated its navigation aid EPU to account for ADS-B latency, resulting in a 

conservative EPU that contained 97.8% of all RPE samples. Recall that the reported ADS-B 

EPU shown in Figure 7-7 contained only 20.6% of the reported RPE samples because it did not 

account for ADS-B latency. This inflation of the EPU can largely be credited to the inclusion of 

navigation aid bias states in the filter design.  

The discontinuities in the EPU are the result of conservative covariance initialization 

values being used when new navigation aids are acquired. This approach ensures that 

measurements from a newly detected navigation aid do not immediately dominate the filter. 

Following initialization, the covariance values (and EPU) converge in a decaying manner in 

accordance with the time constant selected for the Gauss-Markov model implemented for the 

navigation aid bias states.   
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Figure 7-8: Filtered Navigation Aid Lateral Performance for the Varying Number of Navigation 

Aids Test with Navigation Aid Accuracy Settings of NACp 10 and GVA 2. 

Figure 7-9 provides a comparison between the mean navigation aid ADS-B reported RPE 

and the mean navigation aid filtered RPE. The data indicates that both the mean and standard 

deviation of the filtered RPE values were slightly higher than the corresponding ADS-B reported 

RPE values. The mean reported ADS-B came in at 24.9 meters and the mean filtered RPE 

measured 29.8 meters. Ideally, the filtered data would exhibit a lower mean, with less standard 

deviation. This divergence is likely due to the assumption of linear motion that was used for time 

propagation of the system state (refer to Section 4.2.5) and is considered negligible for this 

non-precision application.  
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Figure 7-9: Comparison of ADS-B Reported Navigation Aid Lateral Accuracy with Filtered 

Navigation Aid Lateral Accuracy for the Varying Number of Navigation Aid Test with Navigation 

Aid Accuracy Settings of NACp 10 and GVA 2. 

It is interesting to note that even though the average filtered RPE was higher than the 

corresponding average reported RPE, there was less variation from time step to time step in the 

averaged filtered data. This implies that there must also have been less variation in the 

instantaneous filtered position estimate. This fact is illustrated in Figure 7-10, which is a plot of 

the instantaneous reported RPE compared with the instantaneous filtered RPE for an arbitrary 

navigation aid.  

Figure 7-10 clearly shows that the filtered position exhibited less variation than the 

associated measurement input. This is a testament to the filter’s ability to reject measurement 

noise and produce a smoothed output. In this case, the standard deviation of the reported RPE for 

this navigation aid was 12.8 meters, while the corresponding standard deviation for the filtered 

RPE was only 4.1 meters. It should be emphasized that filtered position, in general, exhibits less 
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variation than the reported position, but there may be cases where the level of filtering is less 

significant. Also note that the filtered position estimate is not always biased towards to the outer 

limits of the measurement data. This just happened to be the case for the navigation aid selected 

for this illustration.  

 
Figure 7-10: Comparison of ADS-B Reported Navigation Aid Radial Position Error with Filtered 

Navigation Aid Radial Position Error for the Varying Number of Navigation Aid Test with 

Navigation Aid Accuracy Settings of NACp 10 and GVA 2 

7.1.1.4 Filtered Vertical Performance for the Host Vehicle 

The vertical performance of the filter observed during Test Case 1 of the Varying 

Number of Airborne Navigation Aids scenario is provided in Figure 7-11. Again, there were no 

navigation aids available to the algorithm for the first 100 seconds of the flight, upon which time 

navigation aids 1 and 2 of Figure 6-2 became available. Once these navigation aids became 

available, the filter self-initialized its position and uncertainty using the methods described in 

Section 4.2.7. 
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Figure 7-11 reveals that the accuracy of the algorithm – reflected in both the VEPU and 

VPE – is also function of the number of navigation aids that are available to the filter. Distinct 

step changes in the VEPU are evident when the number of available navigation aids changed, 

with the minimum VEPU of 238 meters occurring when eight navigation aids were in use. The 

mean VEPU and VPE for this experiment were 466 and -4.8 meters respectively. 

 
Figure 7-11: Host Vehicle Vertical Performance for the Varying Number of Navigation Aids Tests 

with Navigation Aid Accuracies Setting of NACp 10 and GVA 2. 

Similar to the lateral performance evaluation of Section 7.1.1.1, the effects of navigation 

aid geometry relative to the host vehicle were again evident. During the first interval with two 

navigation aids available, the VEPU was on the order of 850 meters, while the VEPU during the 

second interval was approximately 500 meters. In this case, the primary factor contributing to the 

improved accuracy was proximity to the navigation aids, rather than the AOI.  
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Finally, Figure 7-11 indicates that the VEPU contained 96.7% of the instantaneous VPE, 

and was of similar magnitude to the VMPU. Given the expectation of 95% containment, the 

VEPU reported for this test case was also somewhat conservative. 

7.1.1.5 Characteristics of the Simulated Navigation Aid Vertical ADS-B Data 

Figure 7-12 provides the instantaneous VPE, the mean VPE, the programmed VEPU, and 

the VMPU of the vertical ADS-B data that was produced by the simulation and provided as input 

to the filter. This plot shows that the simulation was providing random vertical inputs to the 

algorithm, as denoted by the blue scatter points representing the VPE. The data also indicates 

that the VPE was well represented as a zero mean random variable, with a measured 95% 

containment level (VMPU) of 45.7 meters. This corresponds nicely with the containment level 

corresponding to the GVA of 2 that was selected for this test case (refer to Table 2-7). As a final 

check of the simulation’s vertical position data, the programmed VEPU contained 94.6% of the 

VPE.  

Dissimilar to the lateral performance analysis, the effects of ADS-B transmission latency 

are not evident in Figure 7-12. This is due to the fact that the navigation aids rarely undergo a 

change in vertical position (refer to Figure 6-2); whereas, the navigation aids are continuously 

experiencing a change in lateral position. Because the navigation aid vertical positions are rarely 

changing, the vertical position up to 0.6 seconds in the past is often equivalent to the vertical 

position at the time of reception. These observations suggest that the simulation is providing 

random vertical position reports that correspond to the programmed GVA 2 value. 
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Figure 7-12: ADS-B Reported Navigation Aid Vertical Performance for the Varying Number of 

Navigation Aids Test with Navigation Aid Accuracy Settings of NACp 10 and GVA 2. 

7.1.1.6 Filtered Vertical Performance for the Tracked Navigation Aids 

A plot demonstrating the filter’s performance in tracking the vertical position of the 

airborne navigation aids is given as Figure 7-13. The average VEPU was 53.4 meters, the 

average VPE was -3.7 meters, and the average VMPU was 45.7 meters. The filtered VEPU 

contained 98.2% of the instantaneous VPE and entirely contained the MPU. This implies that the 

filter again generated a conservative accuracy estimate for its tracked navigation aids. 
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Figure 7-13: Filtered Navigation Aid Vertical Performance for the Varying Number of Navigation 

Aids Test with Navigation Aid Accuracy Settings of NACp 10 and GVA 2. 

A comparison between the mean navigation aid ADS-B reported VPE and the mean 

navigation aid filtered VPE, along with their associated standard deviations is presented as 

Figure 7-14. The mean reported VPE was 0.1 meters, while the mean filtered VPE was -3.7 

meters, and both exhibited similar standard deviation values. Two noteworthy observations can 

be taken from these results. First, the results suggests that the filter may be introducing a slight 

bias in the altitude estimate, although this level of bias is insignificant for this application as this 

filter was not intended to be deployed in precision navigation applications. Second, the filter 

appears to be doing little to reject measurement noise in the vertical dimension. This fact is 

further illustrated in Figure 7-15.  
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Figure 7-14: Comparison of ADS-B Reported Navigation Aid Vertical Accuracy with Filtered 

Navigation Aid Lateral Accuracy for the Varying Number of Navigation Aid Test with Navigation 

Aid Accuracy Settings of NACp 10 and GVA 2. 

Figure 7-15 provides a comparison between the ADS-B reported VPE and the filtered 

VPE. The data appears to suggest that the filter may have been rejecting some measurement 

noise, but a comparison of the standard deviations reveals that there was little improvement in 

the filtered VPE. The standard deviation of the reported VPE was 9.9 meters, while the standard 

deviation of the filtered VPE was 9.7 meters. If a more accurate estimate of navigation aid 

vertical position were required, then additional filter tuning in the vertical dimensions would be 

warranted to give more weight to the filter’s vertical dimension process model.   
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Figure 7-15: Comparison of ADS-B Reported Navigation Aid Vertical Position Error with Filtered 

Navigation Aid Vertical Position Error for the Varying Number of Navigation Aid Test with 

Navigation Aid Accuracy Settings of NACp 10 and GVA 2. 

7.1.1.7 Summary of Results for the Varying Number of Navigation Aid Test with Navigation Aid 

Accuracy Settings of NACp 10 and GVA 2 

The outcome of this test scenario demonstrated that the algorithm was capable of 

simultaneously tracking multiple navigation aids while computing a valid estimate of the host 

vehicle’s three-dimensional position. The accuracy of the host vehicle position estimate was a 

function of the number of navigation aids being tracked, and their geometry relative to the host 

vehicle. In addition, the results indicated that the algorithm responded well to changing numbers 

of navigation aids, and produced valid position and accuracy estimates during these transitory 

periods. This test also showed that in some observable measures, the filter improved the received 

ADS-B navigation aid position by filtering out measurement noise; thereby, producing a more 

stable estimate of the navigation aid’s position. Finally, this test established that the simulation 
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was providing random inputs that were within the expectation for the NACp and GVA values 

selected for this experiment.  

Table 7-1 provides a set of summary statistics that were collected during this experiment. 

The same set of statistics was collected for each subsequent test scenario to allow direct 

comparison of the results using a succinct set of statistics. 

Table 7-1: Summary Statistics for the Varying Number of Navigation Aid Test with Navigation Aid 

Accuracy Settings of NACp 10 and GVA 2. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 1,355 Average Navaid EPU [m] 88.9 

Average Host RPE Mode  [m] 367.2 Average Navaid RPE Mode [m] 25.5 

Host EPU Containment  [%] 97.9 Navaid EPU Containment [%] 97.8 

Average Host VEPU  [m] 466.1 Average Navaid VEPU [m] 53.4 

Average Host VPE  [m] -4.8 Average Navaid VPE [m] -3.7 

Host VEPU Containment  [%] 96.7 Navaid VEPU Containment [%] 98.2 

 

7.1.2 Test Case 2 – NACp 6, GVA 1 

This section provides the results observed during Test Case 2 of the Varying Number of 

Airborne Navigation Aids test. The previous section provided a detailed analysis of many of the 

filter’s characteristics. Several of the same observations could be reiterated in this section; 

however, the information presented in this section will be limited to observations that are unique 

to this particular experiment.  

7.1.2.1 Filtered Lateral Performance for the Host Vehicle 

The host vehicle lateral performance observed during Test Case 2 of the Varying Number 

of Airborne Navigation Aids test is given in Figure 7-16. The mean EPU was 1,480 meters, with 

a mean RPE mode of 418 meters. The minimum EPU of 598 meters and minimum RPE mode of 

201 meters were again observed when eight navigation aids were available. For this trial, the 

EPU conservatively contained 97.9% of the RPE values, and was again of similar magnitude to 

the MPU.  
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Figure 7-16: Host Vehicle Lateral Performance for the Varying Number of Navigation Aids Test 

with Navigation Aid Accuracies Setting of NACp 6 and GVA 1. 

Compared to Test Case 1, the NACp decreased from 10 to 6, resulting in a navigation aid 

EPU increase of 5,456% from 10 meters to 555.6 meters (refer to Table 2-6). Despite the large 

increase in navigation aid EPU, the mean host vehicle EPU only recorded an increase of 9.2% 

from 1,355 meters to 1,480 meters. Similarly, the mean of the RPE mode increased 13.7% from 

367 to 418 meters. This suggests that the accuracy of the host vehicle position estimate may only 

be weakly correlated with navigation aid accuracy.  

7.1.2.2 Characteristics of the Simulated Navigation Aid Lateral ADS-B Data 

Per Table 2-6, the NACp level of 6 selected for this test corresponds to a navigation aid 

EPU of 0.3 NM. Accordingly, the simulation is expected to produce random lateral position 

reports with a 95% containment level on the order of 556 meters, and an RPE mode on the order 
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of 227 meters. The programmed EPU, instantaneous RPE, RPE mode, and MPU of the lateral 

ADS-B data produced by the simulation during this test case are provided in Figure 7-17.  

The actual MPU shown in Figure 7-17 was 571 meters, versus an expected 556 meters. 

Likewise, the RPE mode was slightly above the expected 227 meters, coming in at 233 meters. 

These elevated values are also evident in the fact that the programmed EPU contained only 

93.7% of the instantaneous RPE samples. This slight decrease in reported navigation aid 

containment is again contributed to ADS-B transmission latency. However, due to the decreased 

navigation aid accuracy settings used for this test case, transmission latency was no longer the 

dominate factor in the navigation aid RPE. As such, Figure 7-17 validates that the simulation 

was providing data at the NACp 6 level that was appropriate for this test case. 

 
Figure 7-17: ADS-B Reported Navigation Aid Lateral Performance for the Varying Number of 

Navigation Aids Test with Navigation Aid Accuracy Settings of NACp 6 and GVA 1. 
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7.1.2.3 Filtered Lateral Performance for the Tracked Navigation Aids 

The RPE generated from the filter’s estimate of the lateral position of the navigation aids 

is given as Figure 7-18. The average filtered navigation aid RPE mode was 229 meters, with an 

average EPU value of 593 meters. In this case, the EPU completely contained the MPU. The 

filter again accounted for the ADS-B transmission latency, resulting in an EPU that contained 

96.3% of all position errors.  

 
Figure 7-18: Filtered Navigation Aid Lateral Performance for the Varying Number of Navigation 

Aids Test with Navigation Aid Accuracy Settings of NACp 6 and GVA 1. 

A comparison between the mean navigation aid ADS-B reported RPE and the mean 

navigation aid filtered RPE is provided in Figure 7-19. This figure indicates that the mean 

filtered RPE decreased below the mean reported RPE level when four or more navigation aids 

were available. A maximum improvement of 4.5% was achieved when eight navigation aids 

were included in the filter.  
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Figure 7-19: Comparison of ADS-B Reported Navigation Aid Lateral Accuracy with Filtered 

Navigation Aid Lateral Accuracy for the Varying Number of Navigation Aid Test with Navigation 

Aid Accuracy Settings of NACp 6 and GVA 1. 

This improvement in the filtered navigation aid RPE was realized due to the cross 

correlations established in the filter’s covariance matrix. Because the filter tracks all available 

navigation aids, a correlation is developed between each navigation aid and the host vehicle. 

Therefore, as the host vehicle’s position estimate was improved, the navigation aid position 

estimates were also improved through the bi-directional AOA observation update process. 

7.1.2.4 Filtered Vertical Performance for the Host Vehicle 

The vertical performance of the filter observed during Test Case 2 of the Varying 

Number of Airborne Navigation Aids test is presented as Figure 7-20. The mean VEPU was 473 

meters and reflected a 96.3% containment of the VPE. The minimum VEPU of 251 meters was 

observed when eight navigation aids were incorporated into the filter, while the maximum VEPU 

of 869 meters occurred during initialization when only two navigation aids were in use.  
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Figure 7-20: Host Vehicle Vertical Performance for the Varying Number of Navigation Aids Tests 

with Navigation Aid Accuracies Setting of NACp 6 and GVA 1. 

For this test case, the GVA was decreased from 2 to 1, which according to Table 2-7 

represents a 233% increase in navigation aid VEPU from 45 meters to 150 meters. In response to 

this increase in navigation aid VEPU, the mean host vehicle VEPU increased from 466 meters to 

473 meters, for an increase of 1.57%. This suggests a weak correlation between navigation aid 

VEPU and the resulting host vehicle VEPU. 

7.1.2.5 Characteristics of the Simulated Navigation Aid Vertical ADS-B Data 

Figure 7-21 provides the instantaneous VPE, the mean VPE, the programmed VEPU, and 

the VMPU of the vertical ADS-B data that was generated by the simulation and provided as 

input to the filter. The plot shows that the VPE was well represented as a zero mean random 

variable, with a measured 95% containment level (VMPU) of 152 meters. This corresponds well 

with the GVA 1 containment level of 150 meters that was selected for this test case (refer to 
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Table 2-7). Finally, the programmed VEPU contained 94.3% of the VPE samples. These 

observations indicate that the simulation was providing random vertical position reports that 

correspond to the programmed GVA 1 value. 

 
Figure 7-21: ADS-B Reported Navigation Aid Vertical Performance for the Varying Number of 

Navigation Aids Test with Navigation Aid Accuracy Settings of NACp 6 and GVA 1. 

7.1.2.6 Filtered Vertical Performance for the Tracked Navigation Aids 

Figure 7-22 provides a graph that demonstrates the filter’s performance in tracking the 

vertical position of the airborne navigation aids. The average VEPU shown in the graph was 155 

meters, the average VPE was -5.1 meters, and the average VMPU was 150 meters. These values 

all correspond with the GVA value of 1 that was selected for this test. These statistics, along with 

the 95.2% VEPU containment level, indicate that the filter was generating valid vertical position 

and uncertainty estimates for the navigation aids being tracked.  
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Figure 7-22: Filtered Navigation Aid Vertical Performance for the Varying Number of Navigation 

Aids Test with Navigation Aid Accuracy Settings of NACp 6 and GVA 1. 

Figure 7-23 gives a comparison between the mean navigation aid ADS-B reported VPE 

and the mean navigation aid filtered VPE. The mean reported VPE was -1.3 meters, while the 

mean filtered VPE was -5.1 meters. Again the results suggest that the filter may have introduced 

a small bias in the altitude estimate, and again the filter appears to have done little to reject 

measurement noise in the vertical dimension.   
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Figure 7-23: Comparison of ADS-B Reported Navigation Aid Vertical Accuracy with Filtered 

Navigation Aid Lateral Accuracy for the Varying Number of Navigation Aid Test with Navigation 

Aid Accuracy Settings of NACp 6 and GVA 1. 

7.1.2.7 Summary of Results for the Varying Number of Navigation Aid Test with Navigation Aid 

Accuracy Settings of NACp 6 and GVA 1 

The results of this investigation indicate that a decrease in navigation aid accuracy results 

in a disproportionally small decrease in host vehicle position accuracy. This suggests that the 

accuracy of the host vehicle position estimate is more dependent on AOA/AOE uncertainty than 

navigation aid accuracy. This experiment also revealed that in lower NACp cases when four or 

more navigation aids are available, the filter may be capable of generating a better estimate of 

the navigation aid’s position than reported in the ADS-B data. Table 7-2 presents the summary 

statistic gathered during this experiment.  
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Table 7-2: Summary Statistics for the Varying Number of Navigation Aid Test with Navigation Aid 

Accuracy Settings of NACp 6 and GVA 1. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 1,480 Average Navaid EPU [m] 592.5 

Average Host RPE Mode  [m] 417.5 Average Navaid RPE Mode [m] 228.6 

Host EPU Containment  [%] 97.9 Navaid EPU Containment [%] 96.3 

Average Host VEPU  [m] 473.4 Average Navaid VEPU [m] 154.6 

Average Host VPE  [m] -1.6 Average Navaid VPE [m] -5.1 

Host VEPU Containment  [%] 96.3 Navaid VEPU Containment [%] 95.2 

7.1.3 Test Case 3 – NACp 2, GVA 1 

The present section provides an overview of the observations from Test Case 3 of the 

Varying Number of Airborne Navigation Aids test. As with the previous section, the 

observations provided here will be limited to those that are unique to this particular test case. 

7.1.3.1 Filtered Lateral Performance for the Host Vehicle 

The lateral performance of the host vehicle’s filtered position as observed during Test 

Case 3 of the Varying Number of Airborne Navigation Aids test is provided in Figure 7-24. The 

mean EPU was 6,839 meters, with a mean RPE mode of 2,454 meters. The minimum EPU and 

RPE again occurred when eight navigation aids were being tracked. In the case, the minimum 

EPU and RPE were 3,333 meters and 1,176 meters respectively. Finally, A 95.7% EPU 

containment rate was observed for this trial. 

Compared to Test Case 1, the NACp decreased from 10 to 2, resulting in a navigation aid 

EPU increase from 10 meters to 7,408 meters (refer to Table 2-6) for a 73,980% increase in 

navigation aid EPU. The enormous increase in navigation aid EPU led to a relatively moderate 

405% increase in the mean host vehicle EPU, and a similarly moderate 568% increase in the 

mean of the RPE mode. This is further evidence that the host vehicle position accuracy may be 

only weakly correlated with navigation aid accuracy. 
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Figure 7-24: Host Vehicle Lateral Performance for the Varying Number of Navigation Aids Test 

with Navigation Aid Accuracies Setting of NACp 2 and GVA 1. 

7.1.3.2 Characteristics of the Simulated Navigation Aid Lateral ADS-B Data 

In accordance with Table 2-6, the NACp level of 2 selected for this test corresponds to a 

navigation aid EPU of 4.0 NM. Accordingly, the expectation is that the simulation should 

produce random lateral position reports with a 95% containment level on the order of 7,408 

meters and an RPE mode on the order of 3,026 meters. To validate this, the programmed EPU, 

instantaneous RPE, RPE mode, and MPU of the lateral ADS-B data produced by the simulation 

during this test case is provided in Figure 7-25.  
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Figure 7-25: ADS-B Reported Navigation Aid Lateral Performance for the Varying Number of 

Navigation Aids Test with Navigation Aid Accuracy Settings of NACp 2 and GVA 1. 

The average MPU shown in Figure 7-25 was 7,297 meters, versus an expected 7,408 

meters. The RPE mode was also slightly below the expected 3,026 meters, coming in at 2,981 

meters. For this test case, these slight variations are not attributed to ADS-B transmission latency 

because the observed values are now below the levels configured for the test case. That is, 

latency would be expected to increase the error rather than decrease it. The fact that the 

simulated RPE statistics fall below the configured levels is also evident in the fact that the 

configured EPU contained 96% of the simulated RPE samples instead of the desired 95%. These 

slight variations represent an error of approximately 1.5% and are considered acceptable due to 

the finite sample size used to generate the statistics. As such, Figure 7-25 confirms that the 

simulation is providing data at the NACp 2 level that is appropriate for this test case.  
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7.1.3.3 Filtered Lateral Performance for the Tracked Navigation Aids 

The navigation aid RPE generated from the filter’s estimate of the lateral position of the 

navigation aids is given as Figure 7-26. The average filtered navigation aid RPE mode was 2,617 

meters, with an average EPU value of 6,847 meters. Except for the pair of two navigation aid 

intervals, the EPU completely contained the MPU. In total, the EPU generated by the filter 

contained 96.1% of all navigation aid lateral position errors. 

 
Figure 7-26: Filtered Navigation Aid Lateral Performance for the Varying Number of Navigation 

Aids Test with Navigation Aid Accuracy Settings of NACp 2 and GVA 1. 

Figure 7-27 presents the comparison between the mean navigation aid ADS-B reported 

RPE and the mean navigation aid filtered RPE. Again, due to cross correlations, the mean 

filtered RPE decreased below the mean reported RPE level when four or more navigation aids 

were available. An EPU improvement up to 33.3% and a corresponding RPE improvement of up 

to 16.1% were realized when eight navigation aids were available. These observations confirm 
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that the bi-directional AOA observation update process can generate a better navigation aid 

position estimate than what is received in the ADS-B data set, particularly for inaccurate 

navigation aids. 

 
Figure 7-27: Comparison of ADS-B Reported Navigation Aid Lateral Accuracy with Filtered 

Navigation Aid Lateral Accuracy for the Varying Number of Navigation Aid Test with Navigation 

Aid Accuracy Settings of NACp 2 and GVA 1 

7.1.3.4 Filtered Vertical Performance for the Host Vehicle 

The host vehicle vertical performance of the filter observed during Test Case 2 of the 

Varying Number of Airborne Navigation Aids test is shown in Figure 7-28. The mean VEPU 

was 497 meters and reflected a 96.3% containment of the VPE. The minimum VEPU of 262 

meters was observed when eight navigation aids were incorporated into the filter; while the 

maximum VEPU of 958 meters occurred during initialization when only two navigation aids 

were in use. 
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The GVA value remained at 1 for this test case, yet the mean VEPU experienced a 4.9% 

increase over the result observed during Test Case 2 that also used a GVA value of 1. Likewise, 

the minimum VEPU exhibited a 4.3% increase. This increase in VEPU is attributed to the 

corresponding decrease in navigation aid lateral position accuracy that occurred between Test 

Case 2 and Test Case 3. As evident in equation (4-39), the estimated AOE used to develop the 

measurement update innovations is a function of the distance between the host vehicle and the 

airborne navigation aid. As such, errors in the navigation aid lateral position couple into the host 

vehicle vertical position estimate, resulting in a decrease in the host vehicle vertical position 

accuracy. 

 
Figure 7-28: Host Vehicle Vertical Performance for the Varying Number of Navigation Aids Tests 

with Navigation Aid Accuracies Setting of NACp 2 and GVA 1. 
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7.1.3.5 Characteristics of the Simulated Navigation Aid Vertical ADS-B Data 

Figure 7-29 provides the instantaneous VPE, the mean VPE, the programmed VEPU, and 

the VMPU of the vertical ADS-B data that was generated by the simulation and provided as 

input to the filter. This plot is quite similar to Figure 7-21 because both test case utilize a GVA 

value of 1. For the present test case, the plot shows that the VPE was well represented as a zero 

mean random variable, with a measured 95% containment level (VMPU) of 145 meters. This 

corresponds well with the GVA 1 containment level of 150 meters that was selected for this test 

case (refer to Table 2-7). Finally, the programmed VEPU contained 95.8% of the VPE samples. 

These observations indicate that the simulation was providing random vertical position reports 

that correspond with the GVA programmed for this test. 

 
Figure 7-29: ADS-B Reported Navigation Aid Vertical Performance for the Varying Number of 

Navigation Aids Test with Navigation Aid Accuracy Settings of NACp 2 and GVA 1. 
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7.1.3.6 Filtered Vertical Performance for the Tracked Navigation Aids 

A plot that shows the filter’s performance in tracking the vertical position of the airborne 

navigation aids is given as Figure 7-30. The average VEPU shown in the graph was 160 meters, 

the average VPE was -5.3 meters, and the average VMPU was 143 meters. The VEPU 

completely contained the VMPU for the duration of the plotted data. These values all correspond 

with the GVA value of 1 that was selected for this test. These statistics, along with the 96.9% 

VEPU containment level, indicate that the filter generated valid vertical position and uncertainty 

estimates for the navigation aids being tracked.  

 
Figure 7-30: Filtered Navigation Aid Vertical Performance for the Varying Number of Navigation 

Aids Test with Navigation Aid Accuracy Settings of NACp 2 and GVA 1. 

The comparison between the mean navigation aid ADS-B reported VPE and the mean 

navigation aid filtered VPE is provided in Figure 7-31. The mean reported VPE was -1.5 meters, 

while the mean filtered VPE was -5.3 meters. Again the results suggest that the filter may be 
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introducing a small bias in the altitude estimate and the filter still appears to be doing little to 

reject measurement noise in the vertical dimension. 

 
Figure 7-31: Comparison of ADS-B Reported Navigation Aid Vertical Accuracy with Filtered 

Navigation Aid Lateral Accuracy for the Varying Number of Navigation Aid Test with Navigation 

Aid Accuracy Settings of NACp 2 and GVA 1. 

7.1.3.7 Summary of Results for the Varying Number of Navigation Aid Test with Navigation Aid 

Accuracy Settings of NACp 2 and GVA 1 

The information gleamed from this test case provided further evidence that the accuracy 

of the host vehicle position estimate is only weakly correlated with airborne navigation aid 

accuracy. An increase in navigation aid EPU of 73,980% resulted in a corresponding 405% 

increase in host vehicle EPU. This test case also provided evidence that navigation aid lateral 

position errors can affect the both the host vehicle’s lateral and vertical position estimates. 

Finally, it was confirmed that for low accuracy navigation aids, the filter can indeed generate a 
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better estimate of the navigation aid’s true position than what was being reported in the ADS-B 

data. Table 7-3 presents the summary statistic gathered during this experiment. 

Table 7-3: Summary Statistics for the Varying Number of Navigation Aid Test with Navigation Aid 

Accuracy Settings of NACp 2 and GVA 1. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 6,839 Average Navaid EPU [m] 6,847 

Average Host RPE Mode  [m] 2,454 Average Navaid RPE Mode [m] 2,617 

Host EPU Containment  [%] 95.7 Navaid EPU Containment [%] 96.1 

Average Host VEPU  [m] 496.7 Average Navaid VEPU [m] 159.9 

Average Host VPE  [m] -6.6 Average Navaid VPE [m] -5.3 

Host VEPU Containment  [%] 96.3 Navaid VEPU Containment [%] 96.9 

7.2 Random Navigation Aid Test Results 

The purpose of this section is to provide the results of the Random Navigation Aid Test 

Scenario described in Section 6.2. Due to the random nature of this experiment, the test was only 

executed once. 

7.2.1 Filtered Lateral Performance for the Host Vehicle 

The host vehicle lateral performance observed during the Random Navigation Aid Test is 

given in Figure 7-32. For this test scenario, the simulation was configured to provide ten valid 

navigation aids, all having random accuracy and random flight profiles. These navigation aids 

were configured to be valid from the beginning of each run, and to remain valid throughout. 

Because the expectation is that the ten navigation aids were available to the filter throughout 

each run, the graph does not denote the number of navigation aids in use.  

The minimum observed EPU value was 393 meters with a mean of 580 meters. The 

minimum RPE mode was 111 meters, and the mean RPE mode was 162 meters. For this test, the 

EPU value represented a 97.4% containment level and contained the MPU in steady state. These 

observations indicate that the filter’s host vehicle lateral position estimate was more accurate 

with ten random navigation aids than it was during all of the Varying Number of Navigation 

Aids tests whose results are detailed in Section 7.1. This indicates that the filter’s lateral 
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performance continued to improve as the number of navigation aids in view increased beyond 

eight. 

 
Figure 7-32: Host Vehicle Lateral Performance for the Random Navigation Aids Test. 

The RPE mode and the MPU exhibited divergence from the mean when the host vehicle 

experienced a turn. This implies that the filter followed the process model more than the 

measurements during these transitory periods. For this non-precision navigation application, 

these errors are considered acceptable because the mode of the RPE was still well contained by 

the EPU, and relatively few instantaneous RPE samples exceeded the EPU. It may be possible to 

limit the position errors experienced during host vehicle maneuvering by implementing an 

adaptive filter design that adjusts the process noise during state changes. However, some method 

of detecting these state changes would be required, and this may include integration of additional 

sensors. As such, this is considered beyond of the scope of the current research. 
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7.2.2 Characteristics of the Simulated Navigation Aid Lateral ADS-B Data 

Figure 7-33 provides the instantaneous RPE, the Rayleigh mode of the RPE, the 

programed EPU, and the MPU of the simulated lateral ADS-B data that was provided as input to 

the filter. It is obvious from the plot that the MPU greatly exceeds the average of the randomly 

selected EPU values configured for the navigation aids. This is expected for high accuracy 

navigation aids due to the ADS-B transmit latency as described in Section 7.1.1.2. The takeaway 

from this graph is that the simulation was providing random ADS-B position reports that appear 

reasonable given the range of possible NACp values selected for this test. 

 
Figure 7-33: ADS-B Reported Navigation Aid Lateral Performance for the Random Navigation 

Aids Test. 

7.2.3 Filtered Lateral Performance for the Tracked Navigation Aids 

The RPE generated from the filter’s estimate of the lateral position of the navigation aids 

is given in Figure 7-34. The average filtered navigation aid RPE mode was 39.4 meters, with an 
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average EPU value of 111 meters. In this test case, the EPU showed convergence to the MPU 

level and contained 96.4% of all position errors.  

 
Figure 7-34: Filtered Navigation Aid Lateral Performance for the Random Navigation Aids Test. 

The RPE mode and MPU at time stamp 3,150 seconds of Figure 7-34 show a 

discontinuity. Analysis of the data revealed a brief period of RPE outliers for a single navigation 

aid during one of the 50 runs. The instantaneous RPE for a single navigation aid increased to 369 

meters at time 3,150 seconds, then increased to 886 meters at time 3,155 seconds, and peaked at 

1,601 meters at time 3,160 seconds. Due to the selection of 400 meters as the maximum Y-axis 

value, the RPE step to 369 meters is the only outlier visible in the figure. Because this outlier 

only occurred for a single navigation aid in the midst of a 50-run ensemble, it is impossible to 

ascertain the exact cause. The most likely causes would be navigation aid position relative to the 

host vehicle, excessive AOA white noise generated by the simulation, repeated ADS-B data 
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collisions, or other temporary loss of ADS-B data from the navigation aid that persisted for more 

than 20 seconds. The fact that the divergence was relatively short duration, and self-corrected, 

suggests that this was not an issue with a singularity or numeric precision of the filter, but rather 

a transient event that led to a temporary divergence in the filter’s estimate this one navigation 

aid’s position. 

7.2.4 Filtered Vertical Performance for the Host Vehicle 

The performance of the filter’s host vehicle vertical position estimation as observed 

during the Random Navigation Aid test is given as Figure 7-35. The mean VEPU was 205 

meters and reflected a 95.9% containment of the VPE. The minimum observed VEPU was 176 

meters, and the maximum observed VEPU was 261 meters. These observations indicate that the 

filter’s host vehicle vertical position estimate was more accurate with ten random navigation aids 

than it was during all of the Varying Number of Navigation Aids tests whose results are detailed 

in Section 7.1. This shows that the filter’s vertical performance continued to improve as the 

number of navigation aids in view increased beyond eight. 
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Figure 7-35: Host Vehicle Vertical Performance for the Random Navigation Aids Tests. 

7.2.5 Characteristics of the Simulated Navigation Aid Vertical ADS-B Data 

Figure 7-36 provides the instantaneous VPE, the mean VPE, the programmed VEPU, and 

the VMPU of the simulated vertical ADS-B data that was provided as input to the filter. This plot 

shows that the simulation was providing random vertical inputs to the algorithm, as denoted by 

the blue scatter points representing the VPE. The data also indicates that the VPE was well 

represented as a zero mean random variable, with a measured 95% containment level (VMPU) of 

116 meters versus an average randomly selected EPU of 103 meters. The randomly selected EPU 

contained 95.2% of the VPE samples. These results confirm that the simulation was providing 

valid inputs for this test case.  
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Figure 7-36: ADS-B Reported Navigation Aid Vertical Performance for the Random Navigation 

Aids Test. 

7.2.6 Filtered Vertical Performance for the Tracked Navigation Aids 

A plot demonstrating the filter’s performance in tracking the vertical position of the 

airborne navigation aids is given as Figure 7-37. The average VEPU was 101 meters, the average 

VPE was -5.7 meters, and the average VMPU was 113 meters. The filtered VEPU contained 

95.3% of the instantaneous VPE and was of similar magnitude to the MPU. This suggests that 

the filter generated valid vertical position and accuracy estimates for the tracked navigation aids.  
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Figure 7-37: Filtered Navigation Aid Vertical Performance for the Random Navigation Aids Test. 

7.2.6.1 Summary of Results for the Random Navigation Aid Test Scenario 

This test case was selected to provide a set of inputs that would more closely resemble a 

real world scenario, where the both the accuracy and flight paths of the airborne navigations 

would be random. With the exception of a single navigation aid lateral position divergence 

during one instance of the 50-run ensemble, the algorithm performed well. In fact, both the 

lateral and vertical host vehicle accuracy exceeded the best accuracy observed during the 

Variable Number of Airborne Navigation Aids testing of Section 7.1. This suggests that the 

accuracy of the host vehicle position estimates can be expected to improve as the number of 

airborne navigation aids increases beyond eight. Table 7-4 provides the set of summary statistics 

that were collected during this experiment. 
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Table 7-4: Summary Statistics for the Random Navigation Aid Test. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 579.7 Average Navaid EPU [m] 110.5 

Average Host RPE Mode  [m] 162.1 Average Navaid RPE Mode [m] 39.4 

Host EPU Containment  [%] 97.4 Navaid EPU Containment [%] 96.4 

Average Host VEPU  [m] 205.0 Average Navaid VEPU [m] 100.6 

Average Host VPE  [m] -5.7 Average Navaid VPE [m] -5.7 

Host VEPU Containment  [%] 95.9 Navaid VEPU Containment [%] 95.3 

7.3 Parametric Test Results 

This section presents the observations made during the Parametric Test event described in 

Section 6.3. As discussed in Section 6.3, a detailed analysis of the results is not provided. 

Instead, the same set of summary statistics gathered for the previous tests was collected for the 

parametric tests to allow for a direct comparison of the results. Supporting plots similar to those 

presented in Section 7.1 and 7.2 are available in APPENDIX J. To avoid presentation of a 

significant amount of duplicate data, the summary statistics for these parametric tests are 

provided in Table 7-7 and Table 7-8 of Section 7.4. 

7.3.1 Filtered Lateral Performance for the Host Vehicle 

Figure 7-38 presents a graphical summary of the host vehicle lateral accuracy as observed 

during parametric testing. For this plot, the host vehicle accuracy is graphed as a function of 

NACp value, with a different trace for each of the different number of navigation aids selected as 

explained in Table 6-3 of Section 6.3. Figure 7-38A shows the mean host vehicle EPU as a 

function of NACp value, while Figure 7-38B shows the mean host vehicle RPE mode as a 

function of NACp. These plots collectively illustrate that there was relatively little improvement 

of host vehicle lateral accuracy as the navigation aids NACp values improved from 6 to 10. 

However, a significant improvement in host vehicle EPU is evident as the navigation aid NACp 

improved from 2 to 6. Table 7-5 quantifies the level of navigation aid EPU improvement, and 

corresponding host vehicle EPU improvement, for each line segment in the figures. This table is 

interpreted as the percent decrease in EPU or RPE for a given step change in NACp value. For 
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example, row 1 of Table 7-5 indicates that when eight navigation aids were available, a NACp 

increase from 2 to 6 resulted in a 92.5% decrease in the navigation aid EPU, a 78.7% decrease in 

the host vehicle EPU, and an 81.5% decrease in the host vehicle RPE mode.  

  
Figure 7-38A: Average Host Vehicle EPU. Figure 7-38B: Average Host Vehcile RPE. 

Figure 7-38: Parametric Testing – Average Host Vehicle Lateral Accuracy as a Function of NACp.  

 

Table 7-5: Percent Change of EPU and RPE Improvement as a Function of Increasing NACp.  

Number 

Navaids 

Beginning 

NACp 

Ending 

NACp 

Navigation Aid 

EPU Change  

Host Vehicle 

EPU Change 

Host Vehicle 

RPE Change 

8 2 6 -92.5% -78.7% -81.5% 

8 6 10 -98.2% -10.0% -15.3% 

4 2 6 -92.5% -80.3% -85.2% 

4 6 10 -98.2% -12.4% -15.2% 

2 2 6 -92.5% -82.1% -84.6% 

2 6 10 -98.2% -13.3% -17.2% 

Analysis of Table 7-5 reveals that a NACp step from 6 to 10 constitutes a larger 

percentage decrease in navigation aid EPU than a NACp step from 2 to 6. However, the host 

vehicle EPU experiences a larger percent decrease when the navigation aid NACp stepped from 

2 to 6. This occurs because when high quality (high NACp) navigation aids are used, the 

dominant error source in the host vehicle position estimation process is the AOA/AOE 

measurement uncertainty. As the NACp of the navigation aids falls below 6, the uncertainty in 
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the navigation aid position begins to contribute more significantly to the host vehicle’s position 

uncertainty. 

With respect to Figure 7-38, it is interesting to note that a more accurate host vehicle 

position was observed using just 2 high quality navigation aids than was achieved using 8 low 

quality navigation aids. This suggests that the number of available navigation aids may only 

marginally contribute to the overall accuracy. In an effort to confirm this theory, Figure 7-39 

presents the same data as Figure 7-38, but the accuracy is now plotted as a function of the 

number of available navigation aids for each of the three NACp levels.  

Figure 7-39 collaborates Figure 7-38 and shows that there was minimal difference in host 

vehicle accuracy between NACp 6 and NACp 10 over the range of available navigation aids. 

Figure 7-39 also demonstrates that the host vehicle lateral accuracy improved for all NACp 

levels as the number of available navigation aids increased, although the level of improvement 

showed diminishing returns for high quality navigation aids. Increasing the number of available 

navigation aids contributed most significantly for NACp 2 level navigation aids. Table 7-6 

quantifies the level of improvement as a percentage decrease in the host vehicle EPU and RPE 

values as the number of navigation aids increased.  
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Figure 7-39A: Average Host Vehicle EPU. Figure 7-39B: Average Host Vehicle RPE. 

Figure 7-39: Parametric Testing – Average Host Vehicle Lateral Accuracy as a Function of Number 

of Navigation Aids.  

 

Table 7-6: Percent Change of EPU and RPE as a Function of Number of Navigation Aids. 

NACp 

Beginning  

Number of 

Navigation Aids 

Ending 

Number of 

Navigation Aids 

Host Vehicle 

EPU Change 

Host Vehicle 

RPE Change 

10 2 4 -48.5% -45.2% 

10 4 8 -29.9% -26.9% 

6 2 4 -49.1% -46.5% 

6 4 8 -31.7% -26.7% 

2 2 4 -53.7% -44.7% 

2 4 8 -36.9% -41.1% 

 

7.3.2 Filtered Lateral Performance for the Tracked Navigation Aids 

A summary plot of the filter’s estimate of the tracked navigation aid lateral accuracy 

observed during parametric testing is given in Figure 7-40. For this plot, the navigation aid 

accuracy is graphed as a function of NACp value, with a different trace for each of the different 

number of navigation aids evaluated. Figure 7-40A provides the mean filtered navigation aid 

EPU as a function of NACp, while Figure 7-40B gives the mean filtered navigation aid RPE as a 

function of NACp. These plots show that for high quality navigation aids, the number of 

navigation aids being tracked has little bearing on the accuracy of navigation aid position 
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estimate. However, in the NACp 2 case, a discernable improvement in both navigation aid EPU 

and RPE are evident. This reaffirms similar observations made in Test Case 3 of the Varying 

Number of Navigation Aids tests and described in Section 7.1.1.3.   

  
Figure 7-40A: Mean Filtered Navaigation Aid EPU. Figure 7-40B: Mean Filtered Navaigation Aid RPE. 

Figure 7-40: Parametric Testing – Mean Filtered Navigation Aid Lateral Accuracy as a Function of 

NACp Value.  

As shown in Table 7-7, the mean filtered navigation aid EPU for two NACp 2 navigation 

aids was 7,470 meters and the mean RPE mode was 2,999 meters. Similarly, the mean filtered 

navigation aid EPU for eight NACp 2 navigation aids was 6,476 meters with a mean RPE mode 

of 2,385 meters. This constitutes a 13.3% decrease in navigation aid EPU and a 20.5% decrease 

in navigation aid RPE. This improvement is realized due to a combination of the cross 

correlations established in the filter’s covariance matrix and the relative accuracy of the AOA 

measurements as compared to the navigation aid’s position uncertainty.  

7.3.3 Filtered Vertical Performance for the Host Vehicle 

Figure 7-41 provides a summary plot of the host vehicle vertical position accuracy as 

noted during parametric testing. Figure 7-41A presents the mean host vehicle VEPU as a 

function of NACp value, while Figure 7-41B provides the mean host vehicle VEPU as a function 

of the number of navigation aids being tracked. Plots of the mean VPE have not been included 
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because the VPE is one-dimensional measurement that was essentially zero-mean. The mean 

VPE numerical values are provided in Table 7-8. 

  
Figure 7-41A: Average Host Vehcile VEPU as a 

function of NACp Value. 

Figure 7-41B: Average Host Vehcile VEPU as a 

function of Number of Navigation Aids. 

Figure 7-41: Parametric Testing – Average Host Vehicle Vertical Accuracy.  

Figure 7-41A reveals that a minor improvement in host vehicle vertical position accuracy 

was realized as the navigation aid lateral accuracy (NACp) improved. In the two navigation aid 

case, the mean VEPU decreased 15.0% as the NACp increased from 2 to 10. For the four and 

eight navigation aid cases, the mean VEPU decreased 4.5% and 4.2% respectively. This 

relatively minor improvement in host vehicle vertical accuracy as the navigation aid lateral 

accuracy improved is due to the fact that the host vehicle vertical position measurement update 

process is a function of the distance from the host vehicle to the navigation aid and their 

associated position uncertainties. As such, improvements in the navigation aid lateral accuracy 

result in a horizontal coupling to improve vertical accuracy as well. 

Figure 7-41B shows that the mean host vehicle VEPU decreased as the number of 

available navigation aids increased. The greatest improvement occurred on the transition from 

two to four navigation aids, with an average VEPU improvement of 33.4%. On the other hand, 

the VEPU improvement as the number of available navigation aids increased from four to eight 
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was 23.5%. In both cases, the number of available navigation aids doubled, but the resulting 

accuracy improvement displayed diminishing returns.  

7.3.4 Filtered Vertical Performance for the Tracked Navigation Aids  

The filtered estimate of the tracked navigation aid vertical accuracy during parametric 

testing is provided in Figure 7-42. Again, plots of the mean VPE have not been included because 

the VPE is one-dimensional measurement that was essentially zero-mean. The mean VPE 

numerical values are provided in Table 7-8. 

  
Figure 7-42A: Average Filtered Navigation Aid VEPU 

as a function of NACp Value. 

Figure 7-42B: Average Filtered Navigation Aid VEPU 

as a function of Number of Navigation Aids. 

Figure 7-42: Parametric Testing – Average Filtered Navigation Aid Vertical Accuracy.  

Figure 7-42A shows a slight improvement in the navigation aid filtered VEPU as the 

navigation aid lateral accuracy improved from NACp 2 to NACp 6. This was again due to the 

vertical measurement updates being a function of navigation aid lateral position. The plot 

indicates a significant improvement in navigation aid VEPU as the NACp value increased from 6 

to 10; however, the NACp 10 test scenario utilized a GVA of 2, while the NACp 6 test utilized a 

GVA of 1. This VEPU accuracy improvement was a function of improved reported navigation 

aid vertical accuracy rather than a function of filtering and improving NACp.  
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Figure 7-42B indicates that the number of available navigation aids bears little 

consequence to the filtered navigation aid VEPU. For the NACp 10, GVA 2 case, a miniscule 

0.9% improvement was observed as the number of navigation aids increased from two to eight. 

For the NACp 2 and NACp 6 cases, with the GVA set to 1, the average navigation aid filtered 

VEPU improvement was 5.4%. Per Table 2-7, the expected vertical accuracy for GVA 1 is on 

the order of 150 meters, and the expected vertical accuracy for GVA 2 is 45 meters. Both plots of 

Figure 7-42 indicate mean VEPU values of these magnitudes.  

7.3.5 Effects of AOA/AOE Uncertainty on Host Vehicle Position Accuracy 

The purpose of this section is to provide a comparison of the filter’s performance given 

an AOA/AOE uncertainty of 6.0°, as reported by Faragher in Section 3.1.2, as opposed to the 

0.7° AOA/AOE uncertainty achieved by Reck is Section 3.1.1. For this experiment, the eight 

navigation aid, NACp 10 parametric test scenario was repeated with both the simulation and 

filter configured to utilize a 6.0° AOA/AOE uncertainty. A comparison between the host vehicle 

position accuracy achieved with a 6.0° AOA/AOE uncertainty versus a 0.7° AOA/AOE 

uncertainty is presented as Figure 7-43. 

For this test case, high quality navigation aids were selected to limit the position error 

contribution of the navigation aids. Despite this, Figure 7-43 reveals a substantial degradation in 

all aspects of filter performance when an AOA/AOE uncertainty of 6.0° is used. As indicated in 

Table 7-7 and Table 7-8, the mean host vehicle EPU was 4,890 meters, the mean RPE mode was 

1,233 meters, and the mean VEPU was 1,833 meters. This represents a 567% increase in mean 

EPU, a 478% increase in the mean RPE mode, and a 498% increase in mean VEPU over the 

corresponding 0.7° AOA/AOE test. This dismal level of accuracy would be of little benefit to the 

aviation industry. 
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Figure 7-43A: Lateral Performance Comparison. Figure 7-43B: Vertical Performance Comparison. 

Figure 7-43: Comparison of Filter Performance between 6.0° and 0.7° AOA/AOE Uncertainty. 

The performance demonstrated in Figure 7-43 clearly indicates that AOA/AOE 

measurement uncertainty is the primary contributor to the filter’s overall accuracy. This should 

not come as a surprise because the AOA/AOE measurements constitute the coupling between the 

navigation aids and the host vehicle position estimate. Any degradation in AOA/AOE 

measurement performance will naturally affect the overall filter performance. Given this, it may 

be inferred that improving the AOA/AOE measurement uncertainty below the 0.7° level can be 

expected to improve the overall accuracy of the algorithm. 

7.4 Summary of Results 

This section accumulates the summary statistics computed from each test result and 

condenses them into two tables for easy comparison. Table 7-7 presents the statistics describing 

the algorithm’s lateral performance; while Table 7-8 provides the statistics describing the 

algorithm’s vertical performance.  

Table 7-7 and Table 7-8 indicate that the algorithm performed best when an abundance of 

high quality navigation aids were available. To this end, the best results were achieved with the 

Random Navigation Aid test, where ten navigation aids were available to the algorithm. For this 
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test, the mean host vehicle EPU was 580 meters and the mean of the host vehicle RPE mode was 

162 meters. The most accurate mean host vehicle vertical EPU of 205 meters was also observed 

during this test. These tables also confirm that navigation aid accuracy is a factor in in the 

algorithm’s overall performance. However, the accuracy of the algorithm is only marginally 

affected by decreasing NACp until the NACp falls below 6. That is, the filter performance is 

quite similar for a given number of navigation aids when the NACp is 6 or more. However, the 

filter performance degrades rapidly as the NACp falls below 6. 

Perhaps as important as the actual position computed by the algorithm is the filter’s 

estimate of its position uncertainty. In fact, it could be argued that a position estimate is 

meaningless without a corresponding uncertainty estimate. Table 7-7 and Table 7-8 demonstrate 

that the algorithm not only made valid position estimates, it also provided honest uncertainty 

reports. The average of the reported host vehicle EPU containment of RPE was 97.5%. Likewise, 

the average of the reported host vehicle VPEU containment of VPE was 96.6%. When compared 

to the 95% containment objective, it is obvious that the algorithm constructed conservative 

uncertainty estimates across the full range of test scenarios. 
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Table 7-7: Summary Statistics for Algorithm’s Lateral Position Accuracy. 

NACp GVA 
Number  

Navaids 

AOA 

Sigma 

[deg] 

Average  

Host EPU 

[m] 

Average 

Host RPE 

[m] 

Host EPU 

Containment 

[%] 

Average Navaid 

Filtered EPU  

[m] 

Average Navaid 

Filtered RPE 

[m] 

Navaid Filtered  

EPU Containment  

[%] 

Unk Unk <=10 0.7 579.7 162.1 97.4 110.5 39.4 96.4 

10 2 8 6.0 4,890 1,233 98.2 80.4 26.2 97.2 

10 2 8 0.7 732.8 213.5 97.6 79.6 26.1 96.3 

10 2 4 0.7 1,045 292.1 98.1 73.1 24.2 96.9 

10 2 2 0.7 2,031 533.2 98.7 69.2 23.5 97.0 

10 2 Variable 0.7 1,355 367.2 97.9 88.9 25.5 97.8 

6 1 8 0.7 814.3 252.2 97.5 580.3 225.0 96.4 

6 1 4 0.7 1,193 344.3 98.1 590.7 221.5 96.7 

6 1 2 0.7 2,343 643.7 98.7 611.6 235.6 97.3 

6 1 Variable 0.7 1,480 417.5 97.9 592.5 228.6 96.3 

2 1 8 0.7 3,822 1,366 97.0 6,476 2,385 95.7 

2 1 4 0.7 6,058 2,320 94.8 6,898 2,510 96.5 

2 1 2 0.7 13,090 4,199 98.4 7,470 2,999 96.1 

2 1 Variable 0.7 6,839 2,454 95.7 6,847 2,617 96.1 

Notes:  Unk = Unknown. This is due to the random configuration of the navigation aids used for this test. 

Variable = Variable number of navigation aids. These tests periodically alter the number of available navigation aids. 

Average Host RPE = Average of the Host RPE Modes. 
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Table 7-8: Summary Statistics for Algorithm’s Vertical Position Accuracy. 

NACp GVA 
Number  

Navaids 

AOE 

Sigma 

[deg] 

Average  

Host VEPU 

[m] 

Average 

Host VPE 

[m] 

Host VEPU 

Containment 

[%] 

Average Navaid 

Filtered VEPU  

[m] 

Average Navaid 

Filtered VPE 

[m] 

Navaid Filtered 

VEPU Containment  

[%] 

Unk Unk <= 10 0.7 205.0 -5.7 95.9 100.6 -5.7 95.3 

10 2 8 6.0 1,833 -4.1 96.4 54.1 -3.9 98.3 

10 2 8 0.7 306.5 -4.0 96.7 52.9 -3.4 97.3 

10 2 4 0.7 400.1 6.1 96.5 52.9 -4.5 97.9 

10 2 2 0.7 579.4 -3.2 96.5 53.4 -2.4 97.1 

10 2 Variable 0.7 466.1 -4.8 96.7 53.4 -3.7 98.2 

6 1 8 0.7 314.0 -2.9 96.4 149.4 -3.0 94.8 

6 1 4 0.7 410.6 -5.5 96.6 151.7 -6.6 96.1 

6 1 2 0.7 593.3 -5.2 96.7 159.8 -5.4 96.7 

6 1 Variable 0.7 473.4 -1.6 96.3 154.6 -5.1 95.2 

2 1 8 0.7 319.8 -5.1 96.3 155.8 -6.5 96.8 

2 1 4 0.7 418.8 -4.1 96.4 157.6 -4.4 97.6 

2 1 2 0.7 681.5 -6.2 98.1 162.9 -3.5 96.4 

2 1 Variable 0.7 496.7 -6.6 96.3 159.9 -5.3 96.9 

Notes:  Unk = Unknown. This is due to the random configuration of the navigation aids used for this test. 

Variable = Variable number of navigation aids. These tests periodically alter the number of available navigation aids. 
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7.5 Key Qualitative Observations 

This section provides a summary of some of the key observations noted during analysis 

of the various test results. Unlike the preceding sections, these observations are mostly 

qualitative rather than quantitative in nature.  

The suite of test cases have demonstrated that the algorithm is fully capable of tracking 

multiple airborne navigation aids, while simultaneously generating reasonable host vehicle 

position estimates across a wide variety – yet not exhaustive – set of input conditions. The 

algorithm has also demonstrated that it responds quickly to changes in the number of available 

navigation aids without corrupting the host vehicle position estimate. The accuracy of the host 

vehicle position estimates was shown to be function of the AOA/AOE measurement uncertainty, 

the number of available navigation aids, the geometry of the navigation aids relative to the host 

vehicle, and ADS-B reported navigation aid accuracy. The most accurate position estimates were 

achieved when ten high quality navigation aids were available. In this case, a mean EPU of 580 

meters and mean RPE mode of 162 meters were observed. The corresponding VEPU for this test 

case was 205 meters. Finally, the collection of test scenarios has shown that the filter produces 

valid – if not somewhat conservative – estimates of its 95th percentile containment levels in the 

form of EPU and VEPU. Collectively, the average EPU containment was 97.5% and the average 

VEPU containment was 96.6%.  

With respect to tracking the available airborne navigation aids, the algorithm has 

demonstrated an ability to filter out ADS-B position measurement noise, particularly in the 

lateral dimension, to generate navigation aid position estimates that are less noisy than the source 

ADS-B data. It has also been revealed that in certain low quality navigation aid cases, the 

algorithm is capable of generating navigation aid position estimates that are not only less noisy, 

but also more accurate than the received ADS-B position reports. Finally, the results indicate that 
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algorithm generates valid filtered navigation aid EPU and VEPU estimates that correctly account 

for the effects of ADS-B transmission latency. Across the suite of tests, a 96.6% average filtered 

navigation aid EPU containment level, and an average 96.8% VEPU containment level were 

observed.   

During analysis of the test results, there were a small handful of observations that may 

warrant additional analysis and potential algorithm updates. These observations are described in 

the remaining paragraphs of this section. 

Analysis of the algorithm’s ability to track the vertical position of airborne navigation 

aids consistently revealed that the filter did little to improve the navigation aid’s vertical position 

estimate. The algorithm performed poorly in rejecting measurement noise and was unable to 

improve the vertical position estimate. Because the primary goal of the algorithm is to estimate 

the position of the host vehicle, and by all accounts, the algorithm performed as expected in this 

regard, the inability of the algorithm to improve the vertical position reports of airborne 

navigation aids was considered insignificant. The most likely cause of this is the navigation aid 

vertical dimension process noise setting. But because this setting is embedded in a matrix, and 

correlated with, the lateral dimensions process noise, adjusting it may also inadvertently affect 

the filter’s ability to track navigation aids in the lateral dimension. 

During analysis of the Random Navigation Aids test scenario, it was noted that the mode 

of the host vehicle RPE and the host vehicle MPU exhibited divergence when the host vehicle 

experienced a turn. For reference, this was shown in Figure 7-32. Because the RPE mode 

remained well contained by the EPU, and because precision navigation was not a stated or 

achievable goal of the algorithm, this behavior was considered acceptable. It may be possible to 

improve the filter’s response by increasing the host vehicle’s lateral process noise; however, 
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doing so would likely increase the EPU as well. Because the EPU was generally conservative, 

additional increases in the EPU were deemed undesirable. It may also be possible to improve this 

response by implementing an adaptive filter that would automatically adjust the host vehicle 

process noise when a change in state is detected; however, this was deemed to be beyond the 

scope of this project.  

Throughout the complete series of testing that included 14 Monte-Carlo tests, with each 

consisting of a 50-run ensemble, there was a single observation that may indicate a potential 

filter stability issue. On one iteration of the Random Navigation Aids test, the algorithm reported 

a 15 second discontinuity in the path of a single navigation aid (refer to Section 7.2.3). To date, 

no explanation of this divergence has been determined. The most likely causes are geometry of 

the navigation aid relative to the host vehicle, repeated ADS-B data collisions, or other factor 

that prevented processing of the navigation aid’s position reports. The fact that the divergence 

was relatively short duration, and self-corrected, suggests that this was not an issue with a 

singularity or numeric precision of the filter, but rather a transient event that led to a temporary 

loss of the ADS-B data from a single navigation aid.  
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8.0 CONCLUSION 

This section presents a brief overview of the findings discovered during the research 

described in this paper, then presents ideas for follow on work. 

8.1 Summary 

The research documented in this paper has demonstrated that a three-dimensional 

geodetic positioning algorithm based on AOA/AOE measurements from ADS-B capable aircraft 

is technically feasible given a reliable method from which to determine the AOA/AOE of the 

received ADS-B signals.  The research has shown that the algorithm is fully capable of tracking 

multiple airborne navigation aids, while simultaneously generating reasonable host vehicle 

position estimates across a wide variety of anticipated input conditions.  

It has been demonstrated that the algorithm is adept at compensating for ADS-B 

transmission latency and capable of filtering ADS-B position measurement noise to generate 

navigation aid position estimates that are somewhat less noisy than the source ADS-B data. It has 

also been shown that due to the cross correlations established in the filter’s covariance matrix, in 

some cases, the algorithm’s estimate of an airborne navigation aid’s position may be more 

accurate than the position reported by the navigation aid itself.  

The accuracy of the host vehicle position estimate was shown to be a function of the 

AOA/AOE measurement uncertainty, the number of available navigation aids, the geometry of 

the navigation aids relative to the host vehicle, and the accuracy of the airborne navigation aids. 

The most accurate host vehicle position estimates were achieved when ten GNSS quality 

navigation aids were available to the algorithm. In this case, the mean of the RPE mode was 

found to be on the order of 165 meters, the mean EPU was on the order of 580 meters, the mean 

VPE was -6 meters, and the mean VEPU was 205 meters. This implies that the most likely 

outcome of a similar experiment is a lateral position error on the order of 165 meters and a 
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vertical position error that deviates about the -6 meter level. Finally, analysis of the algorithm’s 

95th percentile uncertainty estimates established that the algorithm produces somewhat 

conservative estimates of its uncertainty, making these uncertainty estimates a trustworthy 

indication of the host vehicle’s 95th percentile position accuracy. Taken together, these results 

indicate that the method is capable of producing a non-precision navigation solution that can 

guide an aircraft to its destination. 

8.2 Future Work 

During development of the algorithm, several potential enhancements that were 

considered beyond the scope of the current research were identified. This section itemizes these 

potential enhancements for easy reference. 

Early in the development of the algorithm it was recognized that utilizing navigation aids 

with highly accurate velocity estimates (NACv > 1) would occasionally result in significant 

divergence between the filter’s estimate of navigation aid’s position and the navigation aid’s true 

position. Allowed to persist, this could ultimately result in an ill-conditioned covariance matrix 

that could result in a software exception. As a temporary work around, the algorithm has been 

configured to assume a NACv of 1 for all navigation aids, regardless of received NACv value 

(refer to Section 4.3.1). Additional diagnostic investigation could be performed to determine the 

root cause of this filter instability issue, although little improvement in filter performance is 

expected by improving the navigation aid velocity accuracy input. 

As illustrated in the block diagram of Figure 4-4, the algorithm includes logic to reset the 

filter if the number of available navigation aids falls below two. Although necessary, this 

elementary logic should be improved. It is clear from the design that a minimum of two 

navigation aids are required to generate a host vehicle position estimate. However, this is also 

highly dependent on the geometry of the navigation aids relative to the host vehicle. If the 
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ADS-B AOA data from the only remaining navigation aids generates an AOI with the host 

vehicle that is below 20°, then significant errors in the host vehicle position estimate can be 

expected. This was explained in the context of filter initialization in Section 4.2.7.1. Similar 

logic should be applied to ensure that at least one pair of navigation aids generates a reasonable 

AOI with the host vehicle. The filter should be reset in the absence of at least one reasonable 

pair. 

Observation of the algorithm’s ability to track the vertical position of airborne navigation 

aids consistently revealed that the filter did little to improve the navigation aid’s vertical position 

estimate. The algorithm performed poorly in rejecting measurement noise and was unable to 

improve the vertical position estimate. Because the primary goal of the algorithm is to estimate 

the position of the host vehicle, and by all accounts, the algorithm performed as expected in this 

regard, the inability of the algorithm to improve the vertical position reports of airborne 

navigation aids was considered insignificant. The most likely cause of this are the navigation aid 

vertical dimension process noise settings. Additional tuning could be performed in an effort to 

improve the filter’s ability to improve navigation aid vertical position estimates, although this is 

not expected to result in a significant improvement in the host vehicle vertical position estimates. 

During analysis of the Random Navigation Aids test scenario, it was noted that the mode 

of the host vehicle RPE and the host vehicle MPU exhibited divergence when the host vehicle 

experienced a turn. For reference, this was shown in Figure 7-32. Because the RPE mode 

remained well contained by the EPU, and because precision navigation was not a stated or 

achievable goal of the algorithm, this behavior was considered acceptable. It may be possible to 

improve the filter’s response by increasing the host vehicle’s lateral process noise; however, 

doing so would likely increase the EPU as well. Because the EPU was generally conservative, 
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additional increases in the EPU were deemed undesirable. It may also be possible to improve this 

response by implementing an adaptive filter that would automatically adjust the host vehicle 

process noise when a change in host vehicle state is detected. 

Perhaps the best way to improve the host vehicle position estimate generated by this 

algorithm would be to implement a sensor fusion design to utilize host vehicle acceleration and 

or velocity data in the filter. There are several approaches that could be considered for this. 

Perhaps the most robust solution would be to utilize an inertial navigation system as the basis of 

the host vehicle position. The algorithm presented in this paper could then be used to estimate 

the errors in the INS position so that they could be accounted for. A redesign of the filter would 

be required to achieve this, as the goal of the filter would no longer be to compute the host 

vehicle position directly, but rather to estimate the errors present in the INS so that the errors 

could be removed from the INS position.  
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APPENDIX A – FUNDAMENTAL ROTATION MATRICES 

In navigation applications it is often necessary to express a vector given in one coordinate 

frame in terms of a different coordinate frame. The rotation matrix is the fundamental 

mechanism used to perform this operation. Given the ubiquitous nature of frame rotation 

matrices in navigation applications, this Appendix derives the three basic frame rotation matrices 

used to perform rotations about the X, Y, and Z-axes. The product of these fundamental rotation 

matrices can then be used to construct higher-order rotation matrices to perform the desired 

conversion from one coordinate frame to another. 

The vector r  originates at the origin and extends to the endpoint R as shown in the 

two-dimensional XY Cartesian coordinate frame of Figure A-1A. The goal is to express the same 

vector r  in terms of the rotated coordinate frame (X’Y’). This is shown in red in Figure A-1B. 

 
Figure A-1A: Vector in Initial Frame 

 
Figure A-1B: Vector in Initial and Rotated Frame. 

Figure A-1: Arbitrary Two-Dimensional Vector Expressed in Original and Rotated Frames. 

The coordinate frames are coplanar, with the origin of the rotated frame being coincident 

with the origin of the initial frame. The two frames are related by the rotation angle α. Basic 

trigonometry yields the expressions given in (A-1) through (A-4). 
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𝑟𝑥 = |𝒓| 𝑐𝑜𝑠(𝛽) (A-1) 

𝑟𝑦 = |𝒓| 𝑠𝑖𝑛(𝛽) (A-2) 

𝑟𝑥′ = |𝒓|𝑐𝑜𝑠 (𝛽 − 𝛼) (A-3) 

𝑟𝑦′ = |𝒓|𝑠𝑖𝑛 (𝛽 − 𝛼) (A-4) 

Applying the well-known trigonometric identities for angle differences shown in (A-5) 

and (A-6) to (A-3) and (A-4) results in (A-7) and (A-8).  

𝑐𝑜𝑠(𝛽 − 𝛼) = 𝑐𝑜𝑠(𝛽) 𝑐𝑜𝑠(𝛼) + 𝑠𝑖𝑛 (𝛽)𝑠𝑖𝑛 (𝛼) (A-5) 

𝑠𝑖𝑛(𝛽 − 𝛼) = 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛼) − 𝑐𝑜𝑠 (𝛽)𝑠𝑖𝑛 (𝛼) (A-6) 

𝑟𝑥′ = |𝒓|𝑐𝑜𝑠(𝛽) 𝑐𝑜𝑠(𝛼) + |𝒓|𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(𝛼) (A-7) 

𝑟𝑦′ = |𝒓| 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛼) − |𝒓| 𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(𝛼) (A-8) 

Substituting (A-1) and (A-2) into (A-7) and (A-8) results in the expressions for the XY 

coordinates of r, in the rotated frame, as a function of the initial XY coordinates and the rotation 

angle. This result is shown in (A-9) and (A-10). 

𝑟𝑥′ = 𝑟𝑥𝑐𝑜𝑠(𝛼) + 𝑟𝑦𝑠𝑖𝑛(𝛼) (A-9) 

𝑟𝑦′ = −𝑟𝑥 𝑠𝑖𝑛(𝛼) + 𝑟𝑦𝑐𝑜𝑠 (𝛼) (A-10) 

Finally, (A-9) and (A-10) are expressed in the desired matrix form given as (A-11), 

where C  is the rotation matrix. Due to the orthogonal nature of the matrix C, the transpose of C  

results in a rotation in the opposite direction. 

𝒓′ = 𝑪(𝒓) = [ 𝑐𝑜𝑠 (𝛼) 𝑠𝑖𝑛 (𝛼)−𝑠𝑖𝑛 (𝛼) 𝑐𝑜𝑠 (𝛼)] [𝑟𝑥𝑟𝑦] (A-11) 

The results for the two-dimensional case can easily be extended to a three-dimensional 

rotation about the Z-axis as illustrated in Figure A-2. A rotation about the Z-axis implies a 

rotation from X toward Y in the XY-plane. This is equivalent to the two-dimensional case and 
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these results are given in (A-12) through (A-15), where Cz  is the rotation matrix for a positive 

right handed rotation about the Z-axis. 

 
Figure A-2: Three-Dimensional Frame Rotation about the Z-Axis. 

 

𝑟𝑥′ = 𝑟𝑥𝑐𝑜𝑠(𝛼) + 𝑟𝑦𝑠𝑖𝑛(𝛼) (A-12) 

𝑟𝑦′ = −𝑟𝑥 𝑠𝑖𝑛(𝛼) + 𝑟𝑦𝑐𝑜𝑠 (𝛼) (A-13) 

𝑟𝑧′ = 𝑟𝑧 (A-14) 

𝒓′ = 𝑪𝒛(𝒓) = [ 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛼) 0−𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼) 00 0 1 ] [𝑟𝑥𝑟𝑦𝑟𝑧] (A-15) 

Similarly, a rotation about the X-axis, shown in Figure A-3, implies a frame rotation in 

the YZ-plane, where the direction of positive right handed rotation is from Y to Z. Following the 

process for the derivation of a two-dimensional rotation in the XY-plane, with appropriate axis 

substitutions, it can be shown that the rotation matrix for a rotation about the X-axis is as given 

in (A-16). 

𝒓′ = 𝑪𝒙(𝒓) = [1 0 00 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛼)0 −𝑠𝑖𝑛(𝛼)  𝑐𝑜𝑠(𝛼)] [𝑟𝑥𝑟𝑦𝑟𝑧] (A-16) 
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Figure A-3: Three-Dimensional Frame Rotation about the X-Axis. 

Finally, a rotation about the Y-axis implies a frame rotation in the ZX-plane, where the 

direction of positive right handed rotation is from Z to X. The taxonomy of this rotation is given 

in Figure A-4. 

Again following the process for the derivation of the two-dimensional rotation, and again 

applying appropriate axis substitutions, it can be shown that the rotation matrix for a positive 

right handed rotation about the Y-axis is as given in (A-26). Note that the position of the 

negative sin term is now at the upper right rather than the lower left. This is due to positive 

rotation being from the Z-axis to the X-axis. Because this result differs from the others, a 

summary of the derivation for this rotation is provided in (A-17) through (A-26).  
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Figure A-4: Three-Dimensional Frame Rotation about the Y-Axis. 

 𝑟𝑧 = |𝒓| 𝑐𝑜𝑠(𝛽) (A-17) 

𝑟𝑥 = |𝒓| 𝑠𝑖𝑛(𝛽) (A-18) 

𝑟𝑧′ = |𝒓|𝑐𝑜𝑠 (𝛽 − 𝛼) (A-19) 

𝑟𝑥′ = |𝒓|𝑠𝑖𝑛 (𝛽 − 𝛼) (A-20) 

 Applying the trigonometric identities for angle differences results in: 

𝑟𝑧′ = |𝒓|𝑐𝑜𝑠(𝛽) 𝑐𝑜𝑠(𝛼) + |𝒓|𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(𝛼) (A-21) 

𝑟𝑥′ = |𝒓| 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛼) − |𝒓| 𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(𝛼) (A-22) 

Back substituting (A-17) and (A-18) into (A-21) and (A-22) results in the coordinates 

expressed in the rotated frame as given in (A-23) and (A-25). These results are then given in 

matrix form as (A-26). 

𝑟𝑧′ = 𝑟𝑧𝑐𝑜𝑠(𝛼) + 𝑟𝑥𝑠𝑖𝑛(𝛼) (A-23) 

𝑟𝑥′ = −𝑟𝑧 𝑠𝑖𝑛(𝛼) + 𝑟𝑥𝑐𝑜𝑠 (𝛼) (A-24) 

𝑟𝑦′ = 𝑟𝑦 (A-25) 

𝒓′ = 𝑪𝒚(𝒓) = [𝑐𝑜𝑠(𝛼) 0 −𝑠𝑖𝑛(𝛼)0 1 0𝑠𝑖𝑛(𝛼) 0  𝑐𝑜𝑠(𝛼) ] [𝑟𝑥𝑟𝑦𝑟𝑧] (A-26) 
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APPENDIX B – EARTH CENTERED EARTH FIXED TO NORTH EAST DOWN ROTATION MATRIX  

The process of transforming a vector expressed in the ECEF coordinate frame to the 

equivalent vector in the local geodetic NED frame necessitates the use of a three-dimensional 

rotation matrix. The current appendix derives this rotation matrix.  

The local geodetic NED frame is a locally level navigation frame with an arbitrary origin 

specified by the origin’s geographic latitude and longitude. The relationship between the ECEF 

frame and an arbitrary NED frame is illustrated in Figure B-1. 

 
Figure B-1: Nomenclature for the Earth Centered Earth Fixed to North East Down Coordinate 

Frame Rotation Matrix Derivation. 

The rotation matrix to mechanize an ECEF vector in the NED frame is constructed as a 

series of rotations of the ECEF frame that result in alignment of the rotated ECEF frame with the 

NED frame. The fundamental rotation matrices required to affect a positive right handed rotation 

about a specific axis are derived in APPENDIX A. The specific rotations required to achieve the 

ECEF to NED transformation are: 
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1. Positive rotation about the ECEF Z-axis (rotating from X towards Y) by the longitude 

of the NED frame’s origin as illustrated in Figure B-2. 

2. Negative rotation about the rotated ECEF frame’s Y-axis (rotating from X towards Z) 

by the latitude of the NED frame’s origin plus an additional 90° as shown in Figure 

B-3 and Figure B-4. 

The resulting orthogonal rotation matrix is derived in (B-1) through (B-4). Note that the 

non-commutative nature of matrix multiplication requires that the rotations be expressed in 

reverse order of application (from right-to-left) in the matrix product. 

 

 
Figure B-2: Earth Centered Earth Fixed Frame following Positive Rotation About the Z-Axis by 

the Longitude of the North East Down Frame’s Origin. 
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Figure B-3: Earth Centered Earth Fixed Frame following Negative Rotation About the Rotated 

Y-Axis by the North East Down Frame’s Origin Latitude. 

 

 

 
Figure B-4: Earth Centered Earth Fixed Frame following Negative Rotation About the Rotated 

Y-Axis by 90° Beyond the North East Down Frame’s Origin Latitude. 
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𝐶𝐸𝐶𝐸𝐹𝑁𝐸𝐷 = −𝑅𝑌 (𝜋2 + 𝜑𝑁𝐸𝐷)𝑅𝑍(𝜆𝑁𝐸𝐷) 
(B-1) 

Where: 𝐶𝐸𝐶𝐸𝐹𝑁𝐸𝐷  = Coordinate conversion matrix from ECEF to NED.  

 −𝑅𝑌 = Negative rotation about the ECEF Y-axis. Refer to APPENDIX A.  

 𝑅𝑍 = Positive rotation about the ECEF Z-axis. Refer to APPENDIX A.  

 𝜑𝑁𝐸𝐷 = Latitude of the NED frame’s origin.  

 𝜆𝑁𝐸𝐷 = Longitude of the NED frame’s origin.  

 

𝐶𝐸𝐶𝐸𝐹𝑁𝐸𝐷 =
[  
  𝑐𝑜𝑠 (𝑝𝑖2 + 𝜑𝑁𝐸𝐷) 0 𝑠𝑖𝑛 (𝑝𝑖2 + 𝜑𝑁𝐸𝐷)0 1 0−𝑠𝑖𝑛 (𝑝𝑖2 + 𝜑𝑁𝐸𝐷) 0  𝑐𝑜𝑠 (𝑝𝑖2 + 𝜑𝑁𝐸𝐷)]  

  [ 𝑐𝑜𝑠(𝜆𝑁𝐸𝐷) 𝑠𝑖𝑛(𝜆𝑁𝐸𝐷) 0−𝑠𝑖𝑛(𝜆𝑁𝐸𝐷) 𝑐𝑜𝑠(𝜆𝑁𝐸𝐷) 00 0 1 ] (B-2) 

 

𝐶𝐸𝐶𝐸𝐹𝑁𝐸𝐷 = [−𝑠𝑖𝑛 (𝜑𝑁𝐸𝐷) 0 𝑐𝑜𝑠 (𝜑𝑁𝐸𝐷)0 1 0−𝑐𝑜𝑠 (𝜑𝑁𝐸𝐷) 0  −𝑠𝑖𝑛 (𝜑𝑁𝐸𝐷)] [ 𝑐𝑜𝑠(𝜆𝑁𝐸𝐷) 𝑠𝑖𝑛(𝜆𝑁𝐸𝐷) 0−𝑠𝑖𝑛(𝜆𝑁𝐸𝐷) 𝑐𝑜𝑠(𝜆𝑁𝐸𝐷) 00 0 1 ] (B-3) 

 

𝐶𝐸𝐶𝐸𝐹𝑁𝐸𝐷 = [−𝑠𝑖𝑛(𝜑𝑁𝐸𝐷) 𝑐𝑜𝑠(𝜆𝑁𝐸𝐷) −𝑠𝑖𝑛(𝜑𝑁𝐸𝐷) 𝑠𝑖𝑛(𝜆𝑁𝐸𝐷) 𝑐𝑜𝑠(𝜑𝑁𝐸𝐷)− 𝑠𝑖𝑛(𝜆𝑁𝐸𝐷) 𝑐𝑜𝑠(𝜆𝑁𝐸𝐷) 0−𝑐𝑜𝑠(𝜑𝑁𝐸𝐷) 𝑐𝑜𝑠(𝜆𝑁𝐸𝐷) − 𝑐𝑜𝑠(𝜑𝑁𝐸𝐷) 𝑠𝑖𝑛(𝜆𝑁𝐸𝐷) − 𝑠𝑖𝑛(𝜑𝑁𝐸𝐷)] (B-4) 
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APPENDIX C – EARTH CENTERED EARTH FIXED TO EAST NORTH UP ROTATION MATRIX 

The process of transforming a vector expressed in the ECEF coordinate frame to the 

equivalent vector in the local geodetic ENU frame requires the use of the three-dimensional 

rotation matrix derived in this appendix.  

The local geodetic ENU frame is a locally level navigation frame with an arbitrary origin 

specified by the origin’s geographic latitude and longitude. The relationship between the ECEF 

frame and an arbitrary ENU frame is illustrated in Figure C-1. 

 
Figure C-1: Taxonomy for the Earth Centered Earth Fixed to East North Up Coordinate Frame 

Rotation Matrix Derivation. 

The rotation matrix to mechanize an ECEF vector in the ENU frame is constructed as a 

series of rotations of the ECEF frame that result in alignment of the rotated ECEF frame with the 

ENU frame. The fundamental rotation matrices required to affect a positive right handed rotation 

about a specific axis are derived in APPENDIX A. The specific rotations required to achieve the 

ECEF to ENU transformation are: 
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1. Positive rotation about the ECEF Z-axis (rotating from X towards Y) by the longitude 

of the ENU frame’s origin plus an additional 90° of rotation as illustrated in Figure 

C-2 and Figure C-3. 

2. Positive rotation about the rotated ECEF frame’s X-axis (rotating from Y towards Z) 

by 90° minus the latitude of the ENU frame’s origin as shown in Figure C-4. 

The resulting orthogonal rotation matrix is derived in (C-1) through (C-4), noting that the 

non-commutative nature of matrix multiplication requires that the rotations be expressed in 

reverse order of application (from right-to-left) in the matrix product. 

 

 
Figure C-2: Earth Centered Earth Fixed Frame following Positive Rotation About the Z-Axis by 

the Longitude of the East North Up Frame’s Origin. 
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Figure C-3: Earth Centered Earth Fixed Frame following Positive Rotation About the Z-Axis by 

the Longitude of the East North Up Frame’s Origin Plus an Additional 90°. 

 

 

 
Figure C-4: Earth Centered Earth Fixed Frame following Positive Rotation About the Rotated 

X-Axis by 90° Minus the Latitude of the East North Up Frame’s Origin. 
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𝐶𝐸𝐶𝐸𝐹𝐸𝑁𝑈 = 𝑅𝑋 (𝜋2 − 𝜑𝐸𝑁𝑈)𝑅𝑍 (𝜋2 + 𝜆𝐸𝑁𝑈) 
(C-1) 

Where: 𝐶𝐸𝐶𝐸𝐹𝐸𝑁𝑈  = Coordinate conversion matrix from ECEF to ENU.  

 𝑅𝑋 = Positive rotation about the ECEF X-axis. Refer to APPENDIX A.  

 𝑅𝑍 = Positive rotation about the ECEF Z-axis. Refer to APPENDIX A.  

 𝜑𝐸𝑁𝑈 = Latitude of the ENU frame’s origin. 

 𝜆𝐸𝑁𝑈 = Longitude of the ENU frame’s origin. 

 𝐶𝐸𝐶𝐸𝐹𝐸𝑁𝑈 = 

[  
  1 0 00 𝑐𝑜𝑠 (𝑝𝑖2 − 𝜑𝐸𝑁𝑈) 𝑠𝑖𝑛 (𝑝𝑖2 − 𝜑𝐸𝑁𝑈)
0 −𝑠𝑖𝑛 (𝑝𝑖2 − 𝜑𝐸𝑁𝑈)  𝑐𝑜𝑠 (𝑝𝑖2 − 𝜑𝐸𝑁𝑈)]  

  
[  
  𝑐𝑜𝑠 (𝑝𝑖2 + 𝜆𝐸𝑁𝑈) 𝑠𝑖𝑛 (𝑝𝑖2 + 𝜆𝐸𝑁𝑈) 0
−𝑠𝑖𝑛 (𝑝𝑖2 + 𝜆𝐸𝑁𝑈) 𝑐𝑜𝑠 (𝑝𝑖2 + 𝜆𝐸𝑁𝑈) 00 0 1 ] 

    (C-2) 

 

𝐶𝐸𝐶𝐸𝐹𝐸𝑁𝑈 = [1 0 00 𝑠𝑖𝑛(𝜑𝐸𝑁𝑈) 𝑐𝑜𝑠(𝜑𝐸𝑁𝑈)0 − 𝑐𝑜𝑠(𝜑𝐸𝑁𝑈)  𝑠𝑖𝑛(𝜑𝐸𝑁𝑈)] [−𝑠𝑖𝑛(𝜆𝐸𝑁𝑈) 𝑐𝑜𝑠(𝜆𝐸𝑁𝑈) 0−𝑐𝑜𝑠(𝜆𝐸𝑁𝑈) −𝑠𝑖𝑛(𝜆𝐸𝑁𝑈) 00 0 1 ] (C-3) 

 

𝐶𝐸𝐶𝐸𝐹𝐸𝑁𝑈 = [ −𝑠𝑖𝑛(𝜆𝐸𝑁𝑈) 𝑐𝑜𝑠(𝜆𝐸𝑁𝑈) 0−𝑐𝑜𝑠(𝜆𝐸𝑁𝑈) 𝑠𝑖𝑛(𝜑𝐸𝑁𝑈) − 𝑠𝑖𝑛(𝜆𝐸𝑁𝑈) 𝑠𝑖𝑛(𝜑𝐸𝑁𝑈) 𝑐𝑜𝑠(𝜑𝐸𝑁𝑈)𝑐𝑜𝑠(𝜆𝐸𝑁𝑈) 𝑐𝑜𝑠(𝜑𝐸𝑁𝑈) 𝑠𝑖𝑛(𝜆𝐸𝑁𝑈) 𝑐𝑜𝑠(𝜑𝐸𝑁𝑈) 𝑠𝑖𝑛(𝜑𝐸𝑁𝑈)] (C-4) 
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APPENDIX D – DESCRIPTION OF COVARIANCE MATRIX COORDINATE FRAME CONVERSIONS 

When rotating a covariance matrix from one coordinate frame to another, the goal is to 

utilize a rotation matrix in a similar manner used for position and velocity rotations. Because 

multiplication by a rotation matrix is a linear combination of both scaling and summation, the 

resulting equations must satisfy the properties of variances stated in (D-1) and (D-2) [29]. For 

clarity, (D-2) is expressed explicitly for the sum of two and three random variables in (D-3) and 

(D-4). 

𝑣𝑎𝑟(𝑎𝑋 + 𝑏) = 𝑎2𝑣𝑎𝑟(𝑋) (D-1) 

Where: a = Scaling factor. 

 𝑋 = Random variable. 

 

𝑣𝑎𝑟 (∑𝑎𝑖𝑋𝑖  𝑁
𝑖=1 ) = ∑𝑎𝑖2𝑣𝑎𝑟(𝑋𝑖) + 2 ∑ 𝑎𝑖𝑎𝑗𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)𝑁

1≤𝑖<𝑗≤𝑁
𝑁

𝑖=1  (D-2) 

 𝑣𝑎𝑟(𝑎𝑋 + 𝑏𝑌) = 𝑎2𝑣𝑎𝑟(𝑋) + 𝑏2𝑣𝑎𝑟(𝑌) + 2𝑎𝑏𝐶𝑜𝑣(𝑋, 𝑌) (D-3) 

 𝑣𝑎𝑟(𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍) (D-4) = 𝑎2𝑣𝑎𝑟(𝑋) + 𝑏2𝑣𝑎𝑟(𝑌) + 𝑐2𝑣𝑎𝑟(𝑍) + 2𝑎𝑏𝐶𝑜𝑣(𝑋, 𝑌) + 2𝑎𝑐𝐶𝑜𝑣(𝑋, 𝑍) + 2𝑏𝑐𝐶𝑜𝑣(𝑌, 𝑍) 

The desire is to utilize a function similar to that given in (D-5). Note that (D-5) is for 

demonstration and development of an intuitive expected outcome. This expression is not 

mathematically correct because the variance of 𝑿⃗⃗  is not a vector, but rather an n x n covariance 

matrix as given in (D-6) [29]. Expanding the notation, the individual elements of the covariance 

matrix are defined as shown in (D-7), with a covariance matrix for a 3-dimensional vector of 

random variables given in (D-8) [29]. 
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𝒑 = 𝑣𝑎𝑟(𝑪𝒙) = 𝑣𝑎𝑟 ([𝑐11 𝑐12 𝑐13𝑐21 c22 𝑐23𝑐31 𝑐32 𝑐33] [𝑋𝑌𝑍]) = [𝑣𝑎𝑟(𝑐11𝑋 + 𝑐12𝑌 + 𝑐13𝑍)𝑣𝑎𝑟(𝑐21𝑋 + 𝑐22𝑌 + 𝑐23𝑍)𝑣𝑎𝑟(𝑐31𝑋 + 𝑐32𝑌 + 𝑐33𝑍)] (D-5) 

= [𝑐112 𝑣𝑎𝑟(𝑋) + 𝑐122 𝑣𝑎𝑟(𝑌) + 𝑐132 𝑣𝑎𝑟(𝑍) + 2𝑐11𝑐12𝑐𝑜𝑣(𝑋, 𝑌) + 2𝑐11𝑐13𝑐𝑜𝑣(𝑋, 𝑍) + 2𝑐12𝑐13𝑐𝑜𝑣(𝑌, 𝑍)𝑐212 𝑣𝑎𝑟(𝑋) + 𝑐222 𝑣𝑎𝑟(𝑌) + 𝑐232 𝑣𝑎𝑟(𝑍) + 2𝑐21𝑐22𝑐𝑜𝑣(𝑋, 𝑌) + 2𝑐21𝑐23𝑐𝑜𝑣(𝑋, 𝑍) + 2𝑐22𝑐23𝑐𝑜𝑣(𝑌, 𝑍)𝑐312 𝑣𝑎𝑟(𝑋) + 𝑐322 𝑣𝑎𝑟(𝑌) + 𝑐332 𝑣𝑎𝑟(𝑍) + 2𝑐31𝑐32𝑐𝑜𝑣(𝑋, 𝑌) + 2𝑐31𝑐33𝑐𝑜𝑣(𝑋, 𝑍) + 2𝑐32𝑐33𝑐𝑜𝑣(𝑌, 𝑍)] 

= [𝑐112 𝜎𝑥2 + 𝑐122 𝜎𝑦2 + 𝑐132 𝜎𝑧2 + 2𝑐11𝑐12𝜎𝑥𝑦2 + 2𝑐11𝑐13𝜎𝑥𝑧2 + 2𝑐12𝑐13𝜎𝑦𝑧2𝑐212 𝜎𝑥2 + 𝑐222 𝜎𝑦2 + 𝑐232 𝜎𝑧2 + 2𝑐21𝑐22𝜎𝑥𝑦2 + 2𝑐21𝑐23𝜎𝑥𝑧2 + 2𝑐22𝑐23𝜎𝑦𝑧2𝑐312 𝜎𝑥2 + 𝑐322 𝜎𝑦2 + 𝑐332 𝜎𝑧2 + 2𝑐31𝑐32𝜎𝑥𝑦2 + 2𝑐31𝑐33𝜎𝑥𝑧2 + 2𝑐32𝑐33𝜎𝑦𝑧2
] 

Where: p = The resultant rotated variance vector.  

 C = Coordinate conversion (rotation) matrix.  

 𝒙 = Vector of random variables X, Y, Z.  

 𝜎𝑖2 = Variance of x  in the i dimension.  

 𝜎𝑖𝑗2  = Covariance of x  between the i  and j dimensions.  

 𝑣𝑎𝑟(𝒙) = 𝑷 = 𝐸[(𝒙 − 𝐸[𝒙])(𝒙 − 𝐸[𝒙])𝑇] = 𝐸[(𝒙 − 𝝁𝒙)(𝒙 − 𝝁𝒙)𝑇] (D-6) 

Where: 𝑷 = Covariance matrix.  

 

𝑣𝑎𝑟(𝒙) = 𝑷 = ∑∑𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑗) =𝑁
𝑗=1

𝑁
𝑖=1 ∑∑𝐸[(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)]𝑁

𝑗=1
𝑁

𝑖=1  (D-7) 

 

𝑣𝑎𝑟(𝒙) = 𝑷 = [ 𝑣𝑎𝑟(𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) 𝑐𝑜𝑣(𝑥1, 𝑥3)𝑐𝑜𝑣(𝑥1, 𝑥2) 𝑣𝑎𝑟(𝑥2) 𝑐𝑜𝑣(𝑥2, 𝑥3)𝑐𝑜𝑣(𝑥1, 𝑥3) 𝑐𝑜𝑣(𝑥2, 𝑥3) 𝑣𝑎𝑟(𝑥3) ] (D-8) 

The mathematically correct approach to rotate the matrix of covariance values is 

presented in (D-9) with a proof given as (D-10) [29].  

 

𝑷′ = 𝑉𝑎𝑟(𝑪𝒙) = 𝑪𝑉𝑎𝑟(𝒙)𝑪𝑇 = 𝑪𝑷𝑪𝑇 (D-9) 

Where: 𝑷′ = Rotated covariance matrix.  
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𝑉𝑎𝑟(𝑪𝒙)  = 𝐸{(𝑪𝒙 − 𝑪𝝁)(𝑪𝒙 − 𝑪𝝁)𝑇} (D-10) 

     = 𝐸{[𝑪(𝒙 − 𝝁)][𝑪(𝒙 − 𝝁)]𝑇}  

     = 𝐸{[𝑪(𝒙 − 𝝁)][(𝒙 − 𝝁)]𝑇𝑪𝑇}  

     = 𝑪𝐸{[(𝒙 − 𝝁)][(𝒙 − 𝝁)]𝑇}𝑪𝑇  

     = 𝑪𝑣𝑎𝑟(𝒙)𝑪𝑇  

     = 𝑪𝑷𝑪𝑇  

Carrying out the matrix multiplication of (D-9) leads to (D-11). Note that main diagonal 

elements of (D-11) agree with the intuitive expectations given in (D-5), providing additional 

confidence in the method. For brevity, the off diagonal elements are not shown, but they express 

the covariance of the variables in the new reference frame. 

𝑷′ = 𝑪𝑷𝑪𝑇 (D-11) 

      = [𝑐11 𝑐12 𝑐13𝑐21 c22 𝑐23𝑐31 𝑐32 𝑐33] [ 𝜎𝑥2 𝜎𝑥𝑦2 𝜎𝑥𝑧2𝜎𝑥𝑦2 𝜎𝑦2 𝜎𝑦𝑧2𝜎𝑥𝑧2 𝜎𝑦𝑧2 𝜎𝑧2
] [𝑐11 𝑐21 𝑐31𝑐12 𝑐22 𝑐32𝑐13 𝑐23 𝑐33] = [𝑝11′ 𝑝12′ 𝑝13′𝑝21′ 𝑝22′ 𝑝23′𝑝31′ 𝑝32′ 𝑝33′ ] 

Where: 𝑝11′ = 𝑐112 𝜎𝑥2 + 𝑐122 𝜎𝑦2 + 𝑐132 𝜎𝑧2 + 2𝑐11𝑐12𝜎𝑥𝑦2 + 2𝑐11𝑐13𝜎𝑥𝑧2 + 2𝑐12𝑐13𝜎𝑦𝑧2  

 𝑝22′ = 𝑐212 𝜎𝑥2 + 𝑐222 𝜎𝑦2 + 𝑐232 𝜎𝑧2 + 2𝑐21𝑐22𝜎𝑥𝑦2 + 2𝑐21𝑐23𝜎𝑥𝑧2 + 2𝑐22𝑐23𝜎𝑦𝑧2  

 𝑝33′ = 𝑐312 𝜎𝑥2 + 𝑐322 𝜎𝑦2 + 𝑐332 𝜎𝑧2 + 2𝑐31𝑐32𝜎𝑥𝑦2 + 2𝑐31𝑐33𝜎𝑥𝑧2 + 2𝑐32𝑐33𝜎𝑦𝑧2  
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APPENDIX E – DERIVATION FOR COROLLARY SPHERICAL LAW OF COSINES EQUATION  

This appendix provides the direct derivation for equation (2-88) and rationale for (2-89). 

W.M. Smart provided a similar derivation for determining the adjacent angle B and C of the 

spherical triangle, but did not derive or present a similar equation for the adjacent angle A. 

Following the approach presented in Smart’s work, the derivation shown in this appendix results 

in equation (2-88). The same approach can then be used to easily derive (2-89). 

E.1 Derivation of Corollary Spherical Law of Cosines Equation 

The derivation begins with the spherical law of cosines for side a  and side b shown in 

(E-1) and (E-2) respectively. 

𝑐𝑜𝑠(𝑎) = 𝑐𝑜𝑠(𝑏) 𝑐𝑜𝑠(𝑐) +  𝑠𝑖𝑛(𝑏) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐴) (E-1) 𝑐𝑜𝑠(𝑏) = 𝑐𝑜𝑠(𝑎) 𝑐𝑜𝑠(𝑐) + 𝑠𝑖𝑛(𝑎) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐵) (E-2) 

Rearranging the terms of (E-1) results in (E-3). 

𝑠𝑖𝑛(𝑏) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐴) = 𝑐𝑜𝑠(𝑎) − 𝑐𝑜𝑠(𝑏) 𝑐𝑜𝑠 (𝑐) (E-3) 

Expanding the cos(𝑏) term in (E-3) using (E-2) leads to (E-4). 

𝑠𝑖𝑛(𝑏) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐴) = 𝑐𝑜𝑠(𝑎) − 𝑐𝑜𝑠(𝑐) [𝑐𝑜𝑠(𝑎) 𝑐𝑜𝑠(𝑐) + 𝑠𝑖𝑛(𝑎) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐵)] (E-4) 

Algebraic manipulation of (E-4) gives rise to (E-5). 

𝑠𝑖𝑛(𝑏) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐴) = 𝑐𝑜𝑠(𝑎) [1 − 𝑐𝑜𝑠2(𝑐)] − 𝑠𝑖𝑛 (𝑎)𝑐𝑜𝑠 (𝑐)𝑠𝑖𝑛 (𝑐)𝑐𝑜𝑠 (𝐵) (E-5) 

Applying the Pythagorean trigonometric identity to (E-5) results in (E-6). 

𝑠𝑖𝑛(𝑏) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝐴) = 𝑐𝑜𝑠(𝑎) 𝑠𝑖𝑛2(𝑐) − 𝑠𝑖𝑛(𝑎) 𝑐𝑜𝑠(𝑐) 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠 (𝐵) (E-6) 

Dividing both sides of (E-6) by sin(𝑐) leads directly to (E-7); which is the desired form 

of the corollary spherical law of cosines for sides and a direct restatement of (2-88).  

𝑠𝑖𝑛(𝑏) 𝑐𝑜𝑠(𝐴) = 𝑐𝑜𝑠(𝑎) 𝑠𝑖𝑛(𝑐) − 𝑠𝑖𝑛(𝑎)𝑐𝑜𝑠(𝑐) 𝑐𝑜𝑠 (𝐵) (E-7) 
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APPENDIX F – DERIVATION OF THE HAVERSINE SOLUTION FOR GREAT CIRCLE DISTANCE 

This appendix presents the derivation for the haversine method of computing great circle 

distance. The haversine method is considered a numerically stable approach to computing the 

great circle distance. Formally, the haversine function is defined in (F-1) [51]. 

ℎ𝑎𝑣(𝜃) = 𝑠𝑖𝑛2 (𝜃2) = 1 − 𝑐𝑜𝑠(𝜃)2  (F-1) 

Substituting (F-1) into (2-90) leads to (F-2). 

1 − 2ℎ𝑎𝑣(𝜃) = 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) [ 1 − 2ℎ𝑎𝑣(𝜆𝑞 − 𝜆𝑝)] + 𝑠𝑖𝑛(𝜑𝑝) 𝑠𝑖𝑛 (𝜑𝑞) (F-2) 

Distributing the cosine terms gives rise to (F-3). 

1 − 2ℎ𝑎𝑣(𝜃) = 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) − 2 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) ℎ𝑎𝑣(𝜆𝑞 − 𝜆𝑝)+ 𝑠𝑖𝑛(𝜑𝑝) 𝑠𝑖𝑛 (𝜑𝑞) 
(F-3) 

Applying the trigonometric identity for angle differences shown in (F-4) to (F-3) leads to 

(F-5). 

𝑐𝑜𝑠(𝑎 − 𝑏) = 𝑐𝑜𝑠(𝑎) 𝑐𝑜𝑠(𝑏) + 𝑠𝑖𝑛(𝑎) 𝑠𝑖𝑛(𝑏) (F-4) 1 − 2ℎ𝑎𝑣(𝜃) = 𝑐𝑜𝑠(𝜑𝑝 − 𝜑𝑞) − 2 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) ℎ𝑎𝑣(𝜆𝑞 − 𝜆𝑝) (F-5) 

Invoking the haversine function once more and simplifying leads to (F-6) and (F-7), 

where (F-7) is the haversine equation for determining the geocentric angle between two points on 

a sphere [35] [51]. 

1 − 2ℎ𝑎𝑣(𝜃) = 1 − 2ℎ𝑎𝑣(𝜑𝑝 − 𝜑𝑞) − 2 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) ℎ𝑎𝑣(𝜆𝑞 − 𝜆𝑝) (F-6) ℎ𝑎𝑣(𝜃) = ℎ𝑎𝑣(𝜑𝑝 − 𝜑𝑞) + 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) ℎ𝑎𝑣(𝜆𝑞 − 𝜆𝑝) (F-7) 

Because few calculators or computer programing languages include a haversine or 

inverse haversine function, a computationally identical form can be determined by applying 

(F-1) to (F-7) as shown in (F-8) [35]. The geocentric angle θ is then found as given in (F-9). 

𝑠𝑖𝑛2 (𝜃2) = 𝑠𝑖𝑛2 (𝜑𝑝 − 𝜑𝑞2 ) + 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) 𝑠𝑖𝑛2 (𝜆𝑞 − 𝜆𝑝2 ) (F-8) 
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𝜃 = 2𝑎𝑟𝑐𝑠𝑖𝑛√𝑠𝑖𝑛2 (𝜑𝑝 − 𝜑𝑞2 ) + 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) 𝑠𝑖𝑛2 (𝜆𝑞 − 𝜆𝑝2 ) (F-9) 

Unlike the spherical law of cosines solutions, the haversine solution can calculate the 

angular distance between points from nearly 180° down to exactly 0° [51]. However, the 

haversine solution is numerically ill-conditioned if the points P and Q are nearly antipodal [35]. 

Antipodal points are not a concern for the current application, but for the sake of completeness, 

the following solution is provided to remove this constraint.  

As in the spherical longitude case, application of the four quadrant arctangent function 

can be used to eliminate ambiguities. To implement this solution, an expression for both the sin 

and cos of the geocentric angle must be determined. An expression related to the sin of the 

geocentric angle is readily available from (F-8) as shown in (F-10) [35]. 

𝑠𝑖𝑛 (𝜃2) = √𝑠𝑖𝑛2 (𝜑𝑝 − 𝜑𝑞2 ) + 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) 𝑠𝑖𝑛2 (𝜆𝑞 − 𝜆𝑝2 ) (F-10) 

An expression related to the cos of the geocentric angle can also be determined from 

(F-8) by applying the Pythagorean identity. This series of operations is presented as equation 

(F-11). 

1 − 𝑐𝑜𝑠2 (𝜃2) = 𝑠𝑖𝑛2 (𝜑𝑝 − 𝜑𝑞2 ) + 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) 𝑠𝑖𝑛2 (𝜆𝑞 − 𝜆𝑝2 ) (F-11) 

⇒𝑐𝑜𝑠2 (𝜃2) = 1 − [𝑠𝑖𝑛2 (𝜑𝑝 − 𝜑𝑞2 ) + 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) 𝑠𝑖𝑛2 (𝜆𝑞 − 𝜆𝑝2 )]  

⇒𝑐𝑜𝑠 (𝜃2) = √1 − [𝑠𝑖𝑛2 (𝜑𝑝 − 𝜑𝑞2 ) + 𝑐𝑜𝑠(𝜑𝑝) 𝑐𝑜𝑠(𝜑𝑞) 𝑠𝑖𝑛2 (𝜆𝑞 − 𝜆𝑝2 )]  

Finally, the geocentric angle can be determined using (F-12). 

𝑡𝑎𝑛 (𝜃2) = 𝑠𝑖𝑛 (𝜃2)𝑐𝑜𝑠 (𝜃2) = 2𝑎𝑟𝑐𝑡𝑎𝑛(𝑠𝑖𝑛 (𝜃2)𝑐𝑜𝑠 (𝜃2)) (F-12) 
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The expressions of (F-10) and (F-11) are often simplified by the substitution given in 

(F-13). Applying this substitution to (F-12) leads directly to (F-14) [51]. 

𝑎 = 𝑠𝑖𝑛2 (𝜑𝑝 − 𝜑𝑞2 ) + 𝑐𝑜𝑠 (𝜑𝑝) 𝑐𝑜𝑠 (𝜑𝑞) 𝑠𝑖𝑛2 (𝜆𝑞 − 𝜆𝑝2 ) (F-13) 

𝜃 = 2𝑎𝑟𝑐𝑡𝑎𝑛 ( √𝑎√1 − 𝑎) (F-14) 
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APPENDIX G – FIRST ORDER GAUSS-MARKOV PROCESS NOISE 

The purpose of this appendix is to provide justification for the first order Gauss-Markov 

process noise variance value provided by Gelb that was given as (4-29) and restated in (G-1) 

[48]. 

(𝜎𝑤)2 = 2𝛽(𝜎𝑣)2 (G-1) 

Where: (𝜎𝑤)2 = Gauss-Markov process white noise variance.  

 𝛽 = Correlation time = 1/𝜏  

 (𝜎𝑣)2 = Gauss-Markov random variable variance.  

Gelb gives the continuous time differential equation for a Gauss-Markov process as 

shown in (G-2) [48]. 

𝑣̇ = −𝛽𝑣 + 𝑤 (G-2) 

Where: 𝑣 = Random Gauss-Markov variable  

 𝑣̇ = Derivative of random Gauss-Markov variable. 

 𝑤 = White noise.  

The linear variance propagation equation given in (G-3) can be used to propagate 

covariance forward in time [48]. It’s is well known that that the steady state the rate of change is 

zero, leading to (G-4).  

𝑷̇ = 𝑭𝑷 + 𝑷𝑭𝑇 + 𝑮𝑸𝑮𝑇 (G-3) 

Where: 𝑷̇ = Rate of change of covariance.  

 𝑷 = Covariance matrix. 

 𝑭 = State transition matrix. 

 𝑮 = Process noise transition matrix.  

 𝑸 = Process noise covariance matrix.  

  0 = 𝑭𝑷 + 𝑷𝑭𝑇 + 𝑮𝑸𝑮𝑇 (G-4) 
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Associating the continuous time differential equation terms from (G-2) with the terms of 

(G-4) by letting F = - β and G = 1 leads to (G-5), which is equivalent to the original form of 

(G-1). 

0 = −𝛽(𝜎𝑣)2 + (𝜎𝑣)2−𝛽𝑇 + (𝜎𝑤)2 (G-5) 
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APPENDIX H – DERIVATION OF AOA AND AOE MEASUREMENT EQUATIONS 

Leick et al. provided equations for determining the angle of arrival (α) and angle of 

elevation (β) for positions expressed in the ECEF frame. There were presented as (4-38) and 

(4-39) [41]. However, derivations of the equations were not provided. Given the germane nature 

of these equations to this navigation algorithm, derivations are presented in this appendix. 

H.1 Earth Centered Earth Fixed Angle of Arrival Derivation 

The derivation in this section determines the north referenced angle from one ECEF 

position to another ECEF position as provided in Leick et al. and given as (4-38). 

Begin by assuming that both positions are expressed in the ENU local geodetic 

coordinate frame (refer to Section 2.6.1.1.3) rather than the ECEF frame, then the north 

referenced angle from ENU position A to ENU position B can be determined using planar 

trigonometry as shown in Figure H-1and Equation (H-1). 

 

Figure H-1: Angle of Arrival in Arbitrary North/East Frame. 

 

𝑡𝑎𝑛(𝛼) = ∆𝑒𝑎𝑠𝑡∆𝑛𝑜𝑟𝑡ℎ 

⇒ 𝛼 = 𝑡𝑎𝑛−1 ( ∆𝑒𝑎𝑠𝑡∆𝑛𝑜𝑟𝑡ℎ) 

(H-1) 

Values for ∆𝑒𝑎𝑠𝑡 and ∆𝑛𝑜𝑟𝑡ℎ can easily be determined by rotating the ECEF position 

delta into the ENU frame using (2-74) (a derivation for this matrix is provided in APPENDIX 

N

E

A

BΔnorth
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α 
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C). Expanding the rotation matrix into the corresponding system of equations results in the 

expressions for ∆𝑒𝑎𝑠𝑡 and ∆𝑛𝑜𝑟𝑡ℎ given in (H-2). 

∆𝒓𝐸𝑁𝑈 = [ ∆𝑒𝑎𝑠𝑡∆𝑛𝑜𝑟𝑡ℎ∆𝑢𝑝 ] = 𝑪𝐸𝐶𝐸𝐹𝐸𝑁𝑈 ∆𝒓𝐸𝐶𝐸𝐹 (H-2) 

⇒ [ ∆𝑒𝑎𝑠𝑡∆𝑛𝑜𝑟𝑡ℎ∆𝑢𝑝 ] = [ −𝑠𝑖𝑛(𝜆𝑜) 𝑐𝑜𝑠(𝜆𝑜) 0− 𝑐𝑜𝑠(𝜆𝑜) 𝑠𝑖𝑛(𝜑𝑜) −𝑠𝑖𝑛(𝜆𝑜) 𝑠𝑖𝑛(𝜑𝑜) 𝑐𝑜𝑠(𝜑𝑜)𝑐𝑜𝑠(𝜆𝑜) 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜑𝑜)] [∆𝑥𝑒𝑐𝑒𝑓∆𝑦𝑒𝑐𝑒𝑓∆𝑧𝑒𝑐𝑒𝑓]  

⇒[ ∆𝑒𝑎𝑠𝑡∆𝑛𝑜𝑟𝑡ℎ∆𝑢𝑝 ] = [ − 𝑠𝑖𝑛(𝜆𝑜)∆𝑥𝑒𝑐𝑒𝑓 + 𝑐𝑜𝑠(𝜆𝑜)∆𝑦𝑒𝑐𝑒𝑓−𝑐𝑜𝑠(𝜆𝑜) 𝑠𝑖𝑛(𝜑𝑜)∆𝑥𝑒𝑐𝑒𝑓 −𝑠𝑖𝑛(𝜆𝑜) 𝑠𝑖𝑛(𝜑𝑜)∆𝑦𝑒𝑐𝑒𝑓 + 𝑐𝑜𝑠(𝜑𝑜)∆𝑧𝑒𝑐𝑒𝑓𝑐𝑜𝑠(𝜆𝑜) 𝑐𝑜𝑠(𝜑𝑜)∆𝑥𝑒𝑐𝑒𝑓 +𝑠𝑖𝑛(𝜆𝑜) 𝑐𝑜𝑠(𝜑𝑜) ∆𝑦𝑒𝑐𝑒𝑓 + 𝑠𝑖𝑛(𝜑𝑜)∆𝑧𝑒𝑐𝑒𝑓 ]  

Substituting ∆𝑒𝑎𝑠𝑡 and ∆𝑛𝑜𝑟𝑡ℎ from (H-2) into (H-1) leads to (H-3), which is the 

expression for the true north referenced angle between two ECEF positions given in Leick et al 

in [41]. 

𝛼 = 𝑡𝑎𝑛−1 [ − 𝑠𝑖𝑛(𝜆𝑜) 𝛥𝑥𝑒𝑐𝑒𝑓 + 𝑐𝑜𝑠 (𝜆𝑜)𝛥𝑦𝑒𝑐𝑒𝑓−𝑠𝑖𝑛(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜) 𝛥𝑥𝑒𝑐𝑒𝑓 − 𝑠𝑖𝑛(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝛥𝑦𝑒𝑐𝑒𝑓 + 𝑐𝑜𝑠 (𝜑𝑜)𝛥𝑧𝑒𝑐𝑒𝑓] (H-3) 

Where: 𝛼 = True north referenced angle from ECEF position A to ECEF position B. 

 𝜑𝑜 = Latitude of the origin of the local coordinate frame (host vehicle).  

 𝜆𝑜 = Longitude of the origin of the local coordinate frame (host vehicle).  

 ∆𝑿𝑒𝑐𝑒𝑓 = [∆𝑥𝑒𝑐𝑒𝑓∆𝑦𝑒𝑐𝑒𝑓∆𝑧𝑒𝑐𝑒𝑓] = [𝑟𝑥𝐵 − 𝑟𝑥𝐴𝑟𝑦𝐵 − 𝑟𝑦𝐴𝑟𝑧𝐵 − 𝑟𝑧𝐴
]  

 𝑟𝑥,𝑦,𝑧𝐴  = ECEF position A.  

 𝑟𝑥,𝑦,𝑧𝐵  = ECEF position B.  

H.2 Earth Centered Earth Fixed Angle of Elevation Derivation 

The derivation in this section determines the locally level referenced angle of elevation 

from one ECEF position to another ECEF position as provided in Leick et al. and given as 

(4-39). 

Again, begin by Assuming that both positions are expressed in the ENU local geodetic 

coordinate frame (refer to Section 2.6.1.1.3), then the locally level referenced angle of elevation 
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from ENU position A to ENU position B can be determined using planar trigonometry as shown 

in (H-4). 

sin(𝛽) = ∆𝑢𝑝|∆𝑿𝑒𝑛𝑢| = ∆𝑢𝑝|∆𝑿𝑒𝑐𝑒𝑓| (H-4) 

Substituting the expression for ∆𝑢𝑝 derived in (H-2) into (H-4) leads directly to the 

expression provided by Leick et al in [41] and given as (H-5). 

𝛽 = 𝑠𝑖𝑛−1 [𝑐𝑜𝑠(𝜑𝑜) 𝑐𝑜𝑠(𝜆𝑜)𝛥𝑥 + 𝑐𝑜𝑠(𝜑𝑜) 𝑠𝑖𝑛(𝜆𝑜) 𝛥𝑦 + 𝑠𝑖𝑛 (𝜑𝑜)𝛥𝑧𝑠 ] (H-5) 

Where: 𝛽 = Angle of elevation from ECEF position A to ECEF position B.  

 𝜑𝑜 = Latitude of the origin of the local coordinate frame (host vehicle).  

 𝜆𝑜 = Longitude of the origin of the local coordinate frame (host vehicle).  

 𝑠 = Magnitude of the vector from position A to position B.  
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APPENDIX I –APPLICATION PROGRAM INTERFACE FOR THE ADS-B SIMULATION LIBRARY 

The standalone aircraft simulation library simulates ADS-B capable aircraft by providing 

pseudo ADS-B for user configurable aircraft. The library is designed to be invoked from within a 

controlling application (like MATLAB). The controlling application is responsible for 

configuration and control of the simulation library. This arrangement allows the controlling 

application to invoke the desired number of simulated aircraft, define their flight profiles, 

establish their navigation accuracy, and control when the aircraft states are recomputed. 

Configuration of the simulation library is provided through a series of APIs described in this 

Appendix. 

I.1 ADS-B Simulation Top Level Interface 

The ADS-B aircraft simulation library must be instantiated before it can be utilized by the 

controlling application. Instantiation of the library is accomplished by calling the 

ADSB_Simulation.dll library’s class constructor with the parameters shown in Table I-1. 

Table I-1: ADS-B Simulation Library Class Constructor. 

Function Name: ADSB_Simulation 

Description: Instantiates the ADS-B Simulation library. 

Input Parameters Data Type Description 

simFreq Integer The simulation step frequency in Hz. 

acFreq Integer The aircraft step frequency in Hz, must be less than or equal to 

the simulation step frequency. 

aoaSigma Double The standard deviation of the angle-of-arrival measurement 

uncertainty. 

aoeSigma Double The standard deviation of the angle-of-elevation measurement 

uncertainty. 

randomSeed Boolean Indicates if the random number generators should be seeded with 

a random value. 

Once instantiated, the simulation and all defined aircraft are controlled by invoking the 

step function shown in Table I-2. Each call to the step function will advance the simulation one 

time step and will return a multi-dimensional array that contains the pseudo ADS-B data that 

would have been received by the host vehicle during that time step. Each row of the array 
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represents a received ADS-B message. The contents of each row vary based on the type of 

ADS-B message as shown in Table I-3 through Table I-5. 

Table I-2: ADS-B Simulation Library Aircraft Step Function. 

Function Name: step 

Description: Steps the simulation forward in time by one time step. 

Returns Data Type Description 

ADSB_Data Double[][] Pseudo ADS-B data that would have been received by the host 

vehicle during the time step. 

 
Table I-3: ADS-B Simulation Library Position Message Array. 

Variable Description 

Message Type Set to 1 to indicate that this is a position message. 

ICAO The ICAO address of the transmitting aircraft. 

Receive Time The time that this message would be received by the host vehicle. 

AOA The angle of arrival for this message. 

AOE The angle of elevation for this message. 

Latitude The received ADS-B position latitude. 

Longitude The received ADS-B position longitude. 

Altitude The received ADS-B position altitude. 

 
Table I-4: ADS-B Simulation Library Velocity Message Array. 

Variable Description 

Message Type Set to 2 to indicate that this is a velocity message. 

ICAO The ICAO address of the transmitting aircraft. 

Receive Time The time that this message would be received by the host vehicle. 

AOA The angle of arrival for this message. 

AOE The angle of elevation for this message. 

Velocity East The received ADS-B east velocity. 

Velocity North The received ADS-B north velocity. 

Altitude Rate The received ADS-B altitude rate. 

NACv The received ADS-B NACv value. 

 
Table I-5: ADS-B Simulation Library Status Message Array. 

Variable Description 

Message Type Set to 3 to indicate that this is a status message. 

ICAO The ICAO address of the transmitting aircraft. 

Receive Time The time that this message would be received by the host vehicle. 

AOA The angle of arrival for this message. 

AOE The angle of elevation for this message. 

NACp The received ADS-B NACp value. 

GVA The received ADS-B GVA value. 
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I.2 ADS-B Simulation Waypoint Interface 

The ADS-B simulation waypoint interface provides the ability to define waypoints that 

can be used by the simulation for aircraft flight planning and for situational awareness on 

position output plots generated by the controlling application. Waypoints are defined by calling 

the waypoint.add function shown in Table I-6.  

Table I-6: ADS-B Simulation Library Waypoint Add Procedure. 

Function Name: waypoint.add 

Description: Adds a waypoint to the ADS-B simulation. 

Input Parameters Data Type Description 

ID String The unique waypoint identifier. 

Latitude Double The waypoint latitude in degrees [-90, 90]. 

Longitude Double The waypoint longitude in degrees (-180, 180]. 

Once added, several functions are available to provide details about the defined 

waypoints. These function are described in Table I-7 through Table I-9. 

Table I-7: ADS-B Simulation Library Waypoint Count Function. 

Function Name: waypoint.count 

Description: Returns the number of waypoints that exist in the waypoint list. 

Returns Data Type Description 

Waypoint Count Integer The number of waypoints that have been added. 

 

Table I-8: ADS-B Simulation Library Waypoint Get Function. 

Function Name: waypoint.get 

Description: Returns the waypoint data for the specified waypoint. 

Input Parameters Data Type Description 

Index Integer The index of the waypoint to fetch. 

Returns Data Type Description 

Waypoint Data WaypointType The identifier, latitude, and longitude of the waypoint. Latitude 

and longitude are reported in radians. 

 
Table I-9: ADS-B Simulation Library Waypoint Get Positions Function. 

Function Name: waypoint.getPositions 

Description: Returns the position information for all defined waypoints. 

Returns Data Type Description 

Waypoint Positions Object[] A structure containing latitude and longitude. Each structure 

element is a vector with each entry corresponding to a waypoint. 

Lat = [ lat1, lat2, … latN] 

Lon = [lon1, lon, … lonN]  
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I.3 ADS-B Simulation Aircraft Interface 

The ADS-B simulation aircraft interface provides the ability to configure the simulated 

aircraft. This interface allows the simulated aircraft to be defined and for current state 

information to be retrieved for each configured aircraft. The aircraft interface also contains two 

sub-interfaces. One allows a unique flight plan to be defined for each aircraft and the other 

allows time based control over the defined aircraft. All of these interfaces are defined in this 

section. 

The top level aircraft interface provides functions/procedures to define the simulated 

aircraft and to retrieve information pertaining to the current state of each simulated aircraft. 

Aircraft are defined by invoking one of the two overloads of the aircraft.add function shown in 

Table I-10 and Table I-11. Current state information can be retrieved using the functions defined 

in Table I-12 through Table I-16. 

 

Table I-10: ADS-B Simulation Aircraft Add Procedure. 

Function Name: aircraft.add 

Description: Adds a simulated aircraft to the simulation based on initial latitude/longitude. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Latitude Double The initial latitude of the aircraft in degrees [-90, 90]. 

Longitude Double The initial longitude of the aircraft in degrees (-180, 180]. 

Altitude Double The initial altitude of the aircraft in feet. 

Speed Double The initial speed of the aircraft in knots. 

Track Double The initial track of the aircraft in degrees. 

NACp Byte The initial NACp of the aircraft [0, 11]. 

NACv Byte The initial NACv of the aircraft [0, 4]. 

GVA Byte The initial GVA of the aircraft [0, 3]. 
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Table I-11: ADS-B Simulation Aircraft Add Procedure. 

Function Name: aircraft.add 

Description: Adds a simulated aircraft to the simulation based on initial waypoint position. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Waypoint ID String The waypoint identifier to initialize the aircraft to. 

Altitude Double The initial altitude of the aircraft in feet. 

Speed Double The initial speed of the aircraft in knots. 

Track Double The initial track of the aircraft in degrees. 

NACp Byte The initial NACp of the aircraft [0, 11]. 

NACv Byte The initial NACv of the aircraft [0, 4]. 

GVA Byte The initial GVA of the aircraft [0, 3]. 

 

 

Table I-12: ADS-B Simulation Aircraft Count Function. 

Function Name: aircraft.count 

Description: Returns the number of aircraft that have been defined. 

Returns Data Type Description 

Aircraft Count Integer The number of aircraft that have been added. 

 

 

Table I-13: ADS-B Simulation Aircraft Get Function. 

Function Name: aircraft.get 

Description: Returns the aircraft state data for the specified aircraft. 

Input Parameters Data Type Description 

Index Integer The index of the aircraft to fetch. 

Returns Data Type Description 

Aircraft Data SimAirplane A structure of aircraft information including: ICAO, true aircraft 

state, uncertain aircraft state, reported aircraft position, NACp, 

NACv, and GVA information. 

 

 

Table I-14: ADS-B Simulation Aircraft Get Truth State Function. 

Function Name: aircraft.getTruthState 

Description: Returns the truth state information for all defined aircraft. 

Returns Data Type Description 

Aircraft State Object[] A structure of: ICAO, latitude, longitude, altitude, speed, and 

altitude rate. Each structure element is a vector of data. 

ICAO = [icao1, icao2, … icaoN] 

Lat = [lat1, lat2, … latN] 

etc. 
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Table I-15: ADS-B Simulation Aircraft Get Uncertain State Function. 

Function Name: aircraft.getUncertainState 

Description: Returns the uncertain (noisy) state information for all defined aircraft. 

Returns Data Type Description 

Aircraft State Object[] A structure of: ICAO, latitude, longitude, altitude, speed, and 

altitude rate. Each structure element is a vector of data. 

ICAO = [icao1, icao2, … icaoN] 

Lat = [lat1, lat2, … latN] 

etc. 

 

 

Table I-16: ADS-B Simulation Aircraft Get Reported State Function. 

Function Name: aircraft.getReportedState 

Description: Returns the state that would be reported in the ADS-B data if the ADS-B were sent 

at the current time step. 

Returns Data Type Description 

Aircraft State Object[] A structure of: ICAO, latitude, longitude, altitude, speed, and 

altitude rate. Each structure element is a vector of data. 

ICAO = [icao1, icao2, … icaoN] 

Lat = [lat1, lat2, … latN] 

etc. 

The aircraft command interface provides time based control over the defined aircraft 

using the procedures defined in Table I-17 through Table I-22. 

Table I-17: ADS-B Simulation Aircraft Command Altitude Function. 

Function Name: aircraft.command.alt 

Description: Adds an aircraft altitude change command to the aircraft command list. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time in seconds at which the command is to be applied. 

Altitude Double The new altitude target for the aircraft. Expressed in feet. 

 

Table I-18: ADS-B Simulation Aircraft Command GVA Function. 

Function Name: aircraft.command.gva 

Description: Adds an aircraft GVA change command to the aircraft command list. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time in seconds at which the command is to be applied. 

GVA Byte The new GVA value [0, 3]. 
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Table I-19: ADS-B Simulation Aircraft Command NACp Function. 

Function Name: aircraft.command.nacP 

Description: Adds an aircraft NACp change command to the aircraft command list. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time in seconds at which the command is to be applied. 

NACp Byte The new NACp value [0, 11]. 

 

Table I-20: ADS-B Simulation Aircraft Command NACv Function. 

Function Name: aircraft.command.nacV 

Description: Adds an aircraft NACv change command to the aircraft command list. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time in seconds at which the command is to be applied. 

NACv Byte The new NACv value [0, 4]. 

 

Table I-21: ADS-B Simulation Aircraft Command Speed Function. 

Function Name: aircraft.command.spd 

Description: Adds an aircraft speed change command to the aircraft command list. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time in seconds at which the command is to be applied. 

Speed Double The new speed target for the aircraft. Expressed in knots. 

 

Table I-22: ADS-B Simulation Aircraft Command Track Function. 

Function Name: aircraft.command.trk 

Description: Adds an aircraft track change command to the aircraft command list. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time in seconds at which the command is to be applied. 

Track Double The new track target for the aircraft. Expressed in degrees. 

The aircraft flight plan interface provides the ability to define a pre-programmed flight 

profile for each defined aircraft. The flight profile is defined by adding flight plan waypoints for 

each aircraft to follow. Once the flight plan is defined and engaged, the aircraft will 

autonomously follow the defined profile. Flight plan waypoints are added by calling one of the 

four overloads of the function aircraft.flightPlan.addWpt shown in Table I-23 through Table 

I-26. The flight plan is engaged or disengaged by calling the engage or disengage functions given 

in Table I-27 and Table I-28 respectively. 
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Table I-23: ADS-B Simulation Aircraft Flight Plan Add Waypoint Function. 

Function Name: aircraft.flightPlan.addWpt 

Description: Adds a flight plan waypoint to the aircraft’s flight plan. Speed and altitude targets 

are updated after the waypoint is sequenced. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Waypoint ID String The identifier of a predefined simulation waypoint (Section I.2). 

Next Altitude Double The altitude target (feet) to apply after sequencing the waypoint. 

Next Speed  Double The speed target (knots) to apply after sequencing the waypoint. 

 

 

 
Table I-24: ADS-B Simulation Aircraft Flight Plan Add Waypoint Function. 

Function Name: aircraft.flightPlan.addWpt 

Description: Adds a flight plan waypoint to the aircraft’s flight plan. Speed and altitude targets 

are updated after the waypoint is sequenced. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Latitude Double The latitude (degrees) of the waypoint [-90, 90]. 

Longitude Double The longitude (degrees) of the waypoint (-180, 180]. 

Next Altitude Double The altitude target (feet) to apply after sequencing the waypoint. 

Next Speed  Double The speed target (knots) to apply after sequencing the waypoint. 

 

 

 
Table I-25: ADS-B Simulation Aircraft Flight Plan Add Waypoint Function. 

Function Name: aircraft.flightPlan.addWpt 

Description: Adds a flight plan waypoint to the aircraft’s flight plan. Speed and altitude targets 

are not changed when the waypoint is sequenced. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Waypoint ID String The identifier of a predefined simulation waypoint (Section I.2). 

 

 

 
Table I-26: ADS-B Simulation Aircraft Flight Plan Add Waypoint Function. 

Function Name: aircraft.flightPlan.addWpt 

Description: Adds a flight plan waypoint to the aircraft’s flight plan. Speed and altitude targets 

are not changed when the waypoint is sequenced. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Latitude Double The latitude (degrees) of the waypoint [-90, 90]. 

Longitude Double The longitude (degrees) of the waypoint (-180, 180]. 
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Table I-27: ADS-B Simulation Aircraft Flight Plan Engage Function. 

Function Name: aircraft.flightPlan.engage 

Description: Engages autonomous control to the aircraft’s defined flight plan. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time (seconds) at which to engage the flight plan. 

 

Table I-28: ADS-B Simulation Aircraft Flight Plan Disengage Function. 

Function Name: aircraft.flightPlan.disengage 

Description: Disengages autonomous control to the aircraft’s defined flight plan. 

Input Parameters Data Type Description 

ICAO Integer The unique ICAO address for the aircraft. 

Time Double The time (seconds) at which to disengage the flight plan. 
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APPENDIX J – PARAMETRIC TEST CASE RESULTS 

This appendix provides the graphical results of the Parametric Test Cases described in 

Table 6-3 of Section 6.3. Given the large number of parametric test cases, only a summary of the 

results was provided in Sections 7.3 and 7.4. This appendix provides detailed plots of the results 

from which the summary statistics were computed. Due to the fact that numerous examples were 

presented to demonstrate the correct and expected behavior of the simulation, plots of the 

reported ADS-B positions are not provided in this appendix. Instead, this appendix focuses on 

the plots that demonstrate the behavior of the filter. 

J.1 Parametric Test Case 1: 8 Navigation Aids, NACp 10, GVA 2, 6° AOA Uncertainty 

The summary statistics for Parametric Test Case 1 are provided in Table J-1, with 

supporting data plots provided in Figure J-1 through Figure J-4. 

Table J-1: Summary Statistics for Parametric Test Case 1.  

8 Navigation Aids, NACp 10, GVA 2, 6° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 4,890 Average Navaid EPU [m] 110.5 

Average Host RPE Mode  [m] 1,233 Average Navaid RPE Mode [m] 39.4 

Host EPU Containment  [%] 98.2 Navaid EPU Containment [%] 96.4 

Average Host VEPU  [m] 1,833 Average Navaid VEPU [m] 54.1 

Average Host VPE  [m] -4.1 Average Navaid VPE [m] -3.9 

Host VEPU Containment  [%] 96.4 Navaid VEPU Containment [%] 98.3 
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Figure J-1: Host Vehicle Lateral Position Accuracy for the 8 Navigation Aid, NACp 10, GVA 2, 6° 

AOA Uncertainty Test Case. 

 

 

 
Figure J-2: Navigation Aid Filtered Lateral Position Accuracy for the 8 Navigation Aid, NACp 10, 

GVA 2, 6° AOA Uncertainty Test Case. 



 

270 

 
Figure J-3: Host Vehicle Vertical Position Accuracy for the 8 Navigation Aid, NACp 10, GVA 2, 6° 

AOE Uncertainty Test Case. 

 

 

 
Figure J-4: Navigation Aid Filtered Vertical Position Accuracy for the 8 Navigation Aid, NACp 10, 

GVA 2, 6° AOE Uncertainty Test Case. 
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J.2 Parametric Test Case 2: 8 Navigation Aids, NACp 10, GVA 2, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 2 are provided in Table J-2, with 

supporting data plots provided in Figure J-5 through Figure J-8. 

 

Table J-2: Summary Statistics for Parametric Test Case 2.  

8 Navigation Aids, NACp 10, GVA 2, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 732.8 Average Navaid EPU [m] 79.6 

Average Host RPE Mode  [m] 213.5 Average Navaid RPE Mode [m] 26.1 

Host EPU Containment  [%] 97.6 Navaid EPU Containment [%] 96.3 

Average Host VEPU  [m] 306.5 Average Navaid VEPU [m] 52.9 

Average Host VPE  [m] -4.0 Average Navaid VPE [m] -3.4 

Host VEPU Containment  [%] 96.7 Navaid VEPU Containment [%] 97.3 

 

 

 
Figure J-5: Host Vehicle Lateral Position Accuracy for the 8 Navigation Aid, NACp 10, GVA 2, 0.7° 

AOA Uncertainty Test Case. 
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Figure J-6: Navigation Aid Filtered Lateral Position Accuracy for the 8 Navigation Aid, NACp 10, 

GVA 2, 0.7° AOA Uncertainty Test Case. 

 

 

 
Figure J-7: Host Vehicle Vertical Position Accuracy for the 8 Navigation Aid, NACp 10, GVA 2, 

0.7° AOE Uncertainty Test Case. 
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Figure J-8: Navigation Aid Filtered Vertical Position Accuracy for the 8 Navigation Aid, NACp 10, 

GVA 2, 0.7° AOE Uncertainty Test Case. 

 

J.3 Parametric Test Case 3: 8 Navigation Aids, NACp 6, GVA 1, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 3 are provided in Table J-3, with 

supporting data plots provided in Figure J-9 through Figure J-12. 

 

Table J-3: Summary Statistics for Parametric Test Case 3.  

8 Navigation Aids, NACp 6, GVA 1, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 814.3 Average Navaid EPU [m] 580.3 

Average Host RPE Mode  [m] 252.2 Average Navaid RPE Mode [m] 225.0 

Host EPU Containment  [%] 97.5 Navaid EPU Containment [%] 96.4 

Average Host VEPU  [m] 314.0 Average Navaid VEPU [m] 149.4 

Average Host VPE  [m] -2.9 Average Navaid VPE [m] -3.0 

Host VEPU Containment  [%] 96.4 Navaid VEPU Containment [%] 94.8 
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Figure J-9: Host Vehicle Lateral Position Accuracy for the 8 Navigation Aid, NACp 6, GVA 1, 0.7° 

AOA Uncertainty Test Case. 

 

 
Figure J-10: Navigation Aid Filtered Lateral Position Accuracy for the 8 Navigation Aid, NACp 6, 

GVA 1, 0.7° AOA Uncertainty Test Case. 
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Figure J-11: Host Vehicle Vertical Position Accuracy for the 8 Navigation Aid, NACp 6, GVA 1, 

0.7° AOE Uncertainty Test Case. 

 

 
Figure J-12: Navigation Aid Filtered Vertical Position Accuracy for the 8 Navigation Aid, NACp 6, 

GVA 1, 0.7° AOE Uncertainty Test Case. 
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J.4 Parametric Test Case 4: 8 Navigation Aids, NACp 2, GVA 1, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 4 are provided in Table J-4, with 

supporting data plots provided in Figure J-13 through Figure J-16. 

 

Table J-4: Summary Statistics for Parametric Test Case 4.  

8 Navigation Aids, NACp 2, GVA 1, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 3,822 Average Navaid EPU [m] 6,476 

Average Host RPE Mode  [m] 1,366 Average Navaid RPE Mode [m] 2,385 

Host EPU Containment  [%] 97.0 Navaid EPU Containment [%] 95.7 

Average Host VEPU  [m] 319.8 Average Navaid VEPU [m] 155.8 

Average Host VPE  [m] -5.1 Average Navaid VPE [m] -6.5 

Host VEPU Containment  [%] 96.3 Navaid VEPU Containment [%] 96.8 

 

 

 

 
Figure J-13: Host Vehicle Lateral Position Accuracy for the 8 Navigation Aid, NACp 2, GVA 1, 0.7° 

AOA Uncertainty Test Case. 
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Figure J-14: Navigation Aid Filtered Lateral Position Accuracy for the 8 Navigation Aid, NACp 2, 

GVA 1, 0.7° AOA Uncertainty Test Case. 

 

 
Figure J-15: Host Vehicle Vertical Position Accuracy for the 8 Navigation Aid, NACp 2, GVA 1, 

0.7° AOE Uncertainty Test Case. 
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Figure J-16: Navigation Aid Filtered Vertical Position Accuracy for the 8 Navigation Aid, NACp 2, 

GVA 1, 0.7° AOA Uncertainty Test Case. 

 

J.5 Parametric Test Case 5: 4 Navigation Aids, NACp 10, GVA 2, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 5 are provided in Table J-5, with 

supporting data plots provided in Figure J-17 through Figure J-20. 

 

Table J-5: Summary Statistics for Parametric Test Case 5.  

4 Navigation Aids, NACp 10, GVA 2, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 1,045 Average Navaid EPU [m] 73.1 

Average Host RPE Mode  [m] 292.1 Average Navaid RPE Mode [m] 24.2 

Host EPU Containment  [%] 98.1 Navaid EPU Containment [%] 96.9 

Average Host VEPU  [m] 400.1 Average Navaid VEPU [m] 52.9 

Average Host VPE  [m] 6.1 Average Navaid VPE [m] -4.5 

Host VEPU Containment  [%] 96.5 Navaid VEPU Containment [%] 97.9 
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Figure J-17: Host Vehicle Lateral Position Accuracy for the 4 Navigation Aid, NACp 10, GVA 2, 

0.7° AOA Uncertainty Test Case. 

 

 
Figure J-18: Navigation Aid Filtered Lateral Position Accuracy for the 4 Navigation Aid, NACp 10, 

GVA 2, 0.7° AOA Uncertainty Test Case. 
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Figure J-19: Host Vehicle Vertical Position Accuracy for the 4 Navigation Aid, NACp 10, GVA 2, 

0.7° AOE Uncertainty Test Case. 

 

 
Figure J-20: Navigation Aid Filtered Vertical Position Accuracy for the 4 Navigation Aid, NACp 

10, GVA 2, 0.7° AOA Uncertainty Test Case. 
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J.6 Parametric Test Case 6: 4 Navigation Aids, NACp 6, GVA 1, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 6 are provided in Table J-6, with 

supporting data plots provided in Figure J-21 through Figure J-24. 

 

Table J-6: Summary Statistics for Parametric Test Case 6.  

4 Navigation Aids, NACp 6, GVA 1, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 1,193 Average Navaid EPU [m] 590.7 

Average Host RPE Mode  [m] 344.3 Average Navaid RPE Mode [m] 221.5 

Host EPU Containment  [%] 98.1 Navaid EPU Containment [%] 96.7 

Average Host VEPU  [m] 410.6 Average Navaid VEPU [m] 151.7 

Average Host VPE  [m] -5.5 Average Navaid VPE [m] -6.6 

Host VEPU Containment  [%] 96.6 Navaid VEPU Containment [%] 96.1 

 

 

 
Figure J-21: Host Vehicle Lateral Position Accuracy for the 4 Navigation Aid, NACp 6, GVA 1, 0.7° 

AOA Uncertainty Test Case. 
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Figure J-22: Navigation Aid Filtered Lateral Position Accuracy for the 4 Navigation Aid, NACp 6, 

GVA 1, 0.7° AOA Uncertainty Test Case. 

 

 
Figure J-23: Host Vehicle Vertical Position Accuracy for the 4 Navigation Aid, NACp 6, GVA 1, 

0.7° AOE Uncertainty Test Case. 
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Figure J-24: Navigation Aid Filtered Vertical Position Accuracy for the 4 Navigation Aid, NACp 6, 

GVA 1, 0.7° AOA Uncertainty Test Case. 

 

J.7 Parametric Test Case 7: 4 Navigation Aids, NACp 2, GVA 1, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 7 are provided in Table J-8, with 

supporting data plots provided in Figure J-25 through Figure J-29. 

 

Table J-7: Summary Statistics for Parametric Test Case 7.  

4 Navigation Aids, NACp 2, GVA 1, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 6,058 Average Navaid EPU [m] 6,898 

Average Host RPE Mode  [m] 2,320 Average Navaid RPE Mode [m] 2,510 

Host EPU Containment  [%] 94.8 Navaid EPU Containment [%] 96.5 

Average Host VEPU  [m] 418.8 Average Navaid VEPU [m] 157.6 

Average Host VPE  [m] -4.1 Average Navaid VPE [m] -4.4 

Host VEPU Containment  [%] 96.4 Navaid VEPU Containment [%] 97.6 
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Figure J-25: Host Vehicle Lateral Position Accuracy for the 4 Navigation Aid, NACp 2, GVA 1, 0.7° 

AOA Uncertainty Test Case. 

 

 
Figure J-26: Navigation Aid Filtered Lateral Position Accuracy for the 4 Navigation Aid, NACp 2, 

GVA 1, 0.7° AOA Uncertainty Test Case. 



 

285 

 
Figure J-27: Host Vehicle Vertical Position Accuracy for the 4 Navigation Aid, NACp 2, GVA 1, 

0.7° AOE Uncertainty Test Case. 

 

 
Figure J-28: Navigation Aid Filtered Vertical Position Accuracy for the 4 Navigation Aid, NACp 2, 

GVA 1, 0.7° AOA Uncertainty Test Case. 
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J.8 Parametric Test Case 8: 2 Navigation Aids, NACp 10, GVA 2, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 8 are provided in Table J-8, with 

supporting data plots provided in Figure J-29 through Figure J-32. 

 

Table J-8: Summary Statistics for Parametric Test Case 8.  

2 Navigation Aids, NACp 10, GVA 2, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 2,031 Average Navaid EPU [m] 69.2 

Average Host RPE Mode  [m] 533.2 Average Navaid RPE Mode [m] 23.5 

Host EPU Containment  [%] 98.7 Navaid EPU Containment [%] 97.0 

Average Host VEPU  [m] 579.4 Average Navaid VEPU [m] 53.4 

Average Host VPE  [m] -3.2 Average Navaid VPE [m] -2.4 

Host VEPU Containment  [%] 96.5 Navaid VEPU Containment [%] 97.1 

 

 

 
Figure J-29: Host Vehicle Lateral Position Accuracy for the 2 Navigation Aid, NACp 10, GVA 2, 

0.7° AOA Uncertainty Test Case. 
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Figure J-30: Navigation Aid Filtered Lateral Position Accuracy for the 2 Navigation Aid, NACp 10, 

GVA 2, 0.7° AOA Uncertainty Test Case. 

 

 
Figure J-31: Host Vehicle Vertical Position Accuracy for the 2 Navigation Aid, NACp 10, GVA 2, 

0.7° AOE Uncertainty Test Case. 
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Figure J-32: Navigation Aid Filtered Vertical Position Accuracy for the 2 Navigation Aid, NACp 

10, GVA 2, 0.7° AOA Uncertainty Test Case. 

 

J.9 Parametric Test Case 9: 2 Navigation Aids, NACp 6, GVA 1, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 9 are provided in Table J-9, with 

supporting data plots provided in Figure J-33 through Figure J-36. 

 

Table J-9: Summary Statistics for Parametric Test Case 9.  

2 Navigation Aids, NACp 6, GVA 1, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 2,343 Average Navaid EPU [m] 611.6 

Average Host RPE Mode  [m] 643.7 Average Navaid RPE Mode [m] 235.6 

Host EPU Containment  [%] 98.7 Navaid EPU Containment [%] 97.3 

Average Host VEPU  [m] 593.3 Average Navaid VEPU [m] 159.8 

Average Host VPE  [m] -5.2 Average Navaid VPE [m] -5.4 

Host VEPU Containment  [%] 96.7 Navaid VEPU Containment [%] 96.7 
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Figure J-33: Host Vehicle Lateral Position Accuracy for the 2 Navigation Aid, NACp 6, GVA 1, 0.7° 

AOA Uncertainty Test Case. 

 

 
Figure J-34: Navigation Aid Filtered Lateral Position Accuracy for the 2 Navigation Aid, NACp 6, 

GVA 1, 0.7° AOA Uncertainty Test Case. 
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Figure J-35: Host Vehicle Vertical Position Accuracy for the 2 Navigation Aid, NACp 6, GVA 1, 

0.7° AOE Uncertainty Test Case. 

 

 
Figure J-36: Navigation Aid Filtered Vertical Position Accuracy for the 2 Navigation Aid, NACp 6, 

GVA 1, 0.7° AOA Uncertainty Test Case. 
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J.10 Parametric Test Case 10: 2 Navigation Aids, NACp 2, GVA 1, 0.7° AOA Uncertainty 

The summary statistics for Parametric Test Case 10 are provided in Table J-10, with 

supporting data plots provided in Figure J-37 through Figure J-40. 

 

Table J-10: Summary Statistics for Parametric Test Case 10.  

2 Navigation Aids, NACp 2, GVA 1, 0.7° AOA/AOE Uncertainty. 

Summary Statistic Units Value Summary Statistic Units Value 

Average Host EPU  [m] 13,090 Average Navaid EPU [m] 7,470 

Average Host RPE Mode  [m] 4,199 Average Navaid RPE Mode [m] 2,999 

Host EPU Containment  [%] 98.4 Navaid EPU Containment [%] 96.1 

Average Host VEPU  [m] 681.5 Average Navaid VEPU [m] 162.9 

Average Host VPE  [m] -6.2 Average Navaid VPE [m] -3.5 

Host VEPU Containment  [%] 98.1 Navaid VEPU Containment [%] 96.4 

 

 

 
Figure J-37: Host Vehicle Lateral Position Accuracy for the 2 Navigation Aid, NACp 2, GVA 1, 0.7° 

AOA Uncertainty Test Case. 
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Figure J-38: Navigation Aid Filtered Lateral Position Accuracy for the 2 Navigation Aid, NACp 2, 

GVA 1, 0.7° AOA Uncertainty Test Case. 

 

 
Figure J-39: Host Vehicle Vertical Position Accuracy for the 2 Navigation Aid, NACp 2, GVA 1, 

0.7° AOE Uncertainty Test Case. 
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Figure J-40: Navigation Aid Filtered Vertical Position Accuracy for the 2 Navigation Aid, NACp 2, 

GVA 1, 0.7° AOA Uncertainty Test Case. 
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