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PREFACE 

Definition of Terms 

ABT 199: molecule designed to selectively bind and inhibit Bcl-2, a critical regulator of 

apoptosis. Bcl-2 is hypothesized to play a vital role as the final protein in the neuroprotective 

pathway utilized by PNU-282987.  

ACh: acetylcholine, a neurotransmitter utilized in the human body at all autonomic ganglia, at 

many autonomically innervated organs, at the neuromuscular junction, and at many synapses 

in the CNS. In the mammalian retina, acetylcholine is released from starburst amacrine cells and 

acts on both nicotinic and muscarinic receptors on retinal ganglion cells. 

Allosteric modulation: the modification of an enzyme or protein via the process of ligand 

binding at an allosteric site (a site physically distinct from the protein’s active site) which 

enhances or diminishes the action of substrate at the active binding site.  

α7 nAChR: alpha-7 nicotinic acetylcholine receptor, located on retinal ganglion cells within the 

mammalian retina and hypothesized to play a role in neuroprotection. 

Excitotoxicity: neuronal cell death caused by overstimulation of receptors, specifically by the 

amino acid neurotransmitter, glutamate. In the retina, diseases associated with excitotoxicity 

include glaucoma, retinal ischemia, and diabetic retinopathy. 

IOP: intraocular pressure, or pressure within the eye which is determined by the coupling of 

production of aqueous humor from ciliary epithelium and drainage of aqueous humor through 

the trabecular meshwork. Often this pressure is increased in a glaucomatous state. 

LY 294002: a potent inhibitor of class I phosphoinositide 3-kinases, which signal through Akt to 

hypothetically enhance the action of Bcl-2, an anti-apoptotic protein. 

Neuroprotection: any therapeutic strategy aimed at the prevention or delay of 

neurodegenerative processes. 
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PAM: positive allosteric modulator, a ligand that binds an allosteric site of a protein or enzyme 

to structurally modify and enhance the activity of an orthosteric (primary) agonist at the active 

site. 

PNU-120596: a novel positive allosteric modulator of the α7 nAChR which not only increases 

the potency and maximal efficacy of agonists but also is the first to demonstrate modification of 

neuronal activity in vivo. 

PNU-282987: a potent, specific agonist of the α7 nAChR which is found on retinal ganglion cells 

within the retina. 

RGC: retinal ganglion cell, a type of neuron located on the inner surface of the retina which 

receives visual information from photoreceptors. Retinal ganglion cells transmit vision-forming 

information to the brain via their axons, which collectively form the optic nerve. Death of these 

neurons is the hallmark pathologic feature of glaucoma. 

SB 203580: an inhibitor of MAP kinase signaling, specifically of p38 MAP kinase which is 

implicated in the excitotoxic pathway of retinal ganglion cells. 
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ABSTRACT 
 

Glaucoma is one of several neurodegenerative diseases of the central nervous system for which 

a pharmacologic cure is yet to be discovered. In previous studies acetylcholine (ACh) has 

provided neuroprotection for retinal ganglion cells (RGC) in the mammalian retina under 

glaucomatous conditions (Wehrwein et al., 2004). More specifically, an α7 nicotinic ACh 

receptor (nAChR) agonist has demonstrated neuroprotection for RGCs in both in vitro and in 

vivo models of glaucoma (Iwamoto et al., 2014). In this study, this α7 nAChR agonist was 

combined with a positive allosteric modulator (PAM) in dissociated adult porcine retinas to 

evaluate its effect on isolated RGCs and identify a potential molecular signaling pathway of 

neuroprotection. 

 

Porcine retinas were dissociated using a two-step panning technique to isolate RGCs. Once 

isolated, RGCs were cultured under various pharmacologic conditions and incubated for 3 days. 

Pharmacologic conditions utilized throughout the course of this research included: agonist 

alone, agonist with low, medium or high dose PAM, and PAM without agonist. In subsequent 

experiments, enzyme inhibitors were applied thirty minutes prior to pharmacologic 

intervention to evaluate effects of the drugs in the absence of specific proteins utilized in their 

hypothesized cellular signaling pathway. 

 

Retinal ganglion cells treated with the α7 nAChR agonist alone demonstrated a 28.0% (± 12.8%) 

increase in cell survival over untreated control. This agonist in combination with medium or 

high dose PAM resulted in increased cell survival at 43.0% (± 11.6%) and 52.0% (± 20.9%), 
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respectfully.  However when the PAM was used as monotherapy, cell survival increased by only 

3.2% (± 10.4%) over untreated control, supporting its hypothesized allosteric mechanism of 

action. Enzyme inhibition results suggest that the α7 nAChR agonist utilizes the PI3 to Bcl-2 

signaling pathway to produce this neuroprotective effect, and that the PAM works in an 

allosteric manner through PI3 kinase to produce an enhanced effect. These studies provide 

support for future research in analyzing the effects of an α7 nAChR agonist and PAM in in vivo 

models of RGC death. Further understanding of these pharmacologic agents could provide 

important information in the development of new therapeutic options for glaucoma and other 

neurodegenerative diseases. 
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CHAPTER 1 

INTRODUCTION 

 

Background 

 Glaucoma is a pathologic state in which a combination of increased intraocular pressure, 

damage to the optic nerve, and death of retinal ganglion cells result in loss of vision and 

ultimately, irreversible blindness.  According to the World Health Organization’s 2012 statistics, 

there are an estimated 285 million people in the world who are visually impaired, 39 million of 

who are legally blind (WHO Media Centre, 2012). Of those, approximately 44.7 million people 

are blind or visually impaired as a result of open-angle glaucoma, and this number is expected 

to increase to 58.6 million people by 2020 (Jacobs, Trobe & Park, 2014). Consequently, 

glaucoma is the second-leading cause of blindness in the world. In addition to this staggering 

data, the American Academy of Ophthalmology estimates only 50% of the 3 million Americans 

who suffer from open-angle glaucoma are aware that they have the condition (The Ophthalmic 

News & Education Network, 2010). The insidious, chronic nature of open-angle glaucoma in 

combination with the lack of curative treatment renders glaucoma a devastating medical 

problem that needs to be addressed.  

 Treatment for glaucoma is limited. The American Academy of Ophthalmology lists 

pharmacologic treatment, laser therapy, or incisional glaucoma surgery as treatment options, 

with pharmacological eye drops being the most common (The Ophthalmic News & Education 

Network, 2010). The problem with these options is that they all aim to treat the initial 
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pathology of increased intraocular pressure (IOP), but none addresses the underlying cause of 

blindness- optic nerve damage and retinal ganglion cell (RGC) death. An increase in IOP results 

when the outflow channels between the trabecular meshwork and the uveoscleral blood 

vessels resist aqueous drainage from within the eye (American Glaucoma Society, 2013) or 

when production of aqueous humor exceeds the capacity of the drainage system. When the 

aqueous humor is unable to drain, either completely or at a rate sufficient for production, the 

pressure within the eye rises. Elevated IOP is the number one risk factor for glaucoma, but it is 

not widely accepted as the direct cause of blindness and is not present in all cases of glaucoma. 

Increased IOP and RGC death have a cause and effect relationship. Most often, an increase in 

IOP results in activation of pathways that are involved in apoptotic RGC death.  However not all 

cases of glaucoma present with IOP, and studies have shown lowering IOP does not ensure 

prevention of RGC death (Sena et al., 2010). A specific class of glaucoma called normotensive 

glaucoma presents with the same pathological findings as open-angle glaucoma in the absence 

of elevated IOP (Munemasa & Kitaoka, 2013). All currently accepted therapies are targeted at 

decreasing IOP since this is the only modifiable risk factor (American Glaucoma Society, 2013). 

However, not all cases of glaucoma exhibit this risk factor and therapies focused on direct 

protection of the optic nerve remain to be utilized. 

There are numerous theories regarding the molecular mechanism behind RGC 

degeneration associated with glaucoma. In addition to IOP elevation, the processes of oxidative 

stress, autoimmune regulation, glial cell activation, endoplasmic reticulum stress, endothelin 

receptor activation, neurotrophic factor deprivation, and excitotoxicity have all been implicated 

in the degeneration of RGCs (Munemasa & Kitaoka, 2013; Kuehn et al., 2005). The process of 
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excitotoxicity, specifically excitotoxicity caused by the neurotransmitter glutamate, has been a 

focus of extensive background study in this lab and others for decades. Glutamate is an 

excitatory neurotransmitter that is released by presynaptic neurons in the mammalian nervous 

system. Glutamate excitotoxicity is a pathological process involved in numerous degenerative 

conditions throughout the central nervous system and within the retina (Munemasa & Kitaoka, 

2013). Toxicity in the retina was first described in 1957 by Lucas and Newhouse who injected 

glutamate subcutaneously in mice and observed severe destruction of the retinal ganglion cell 

layer (Lucas & Newhouse, 1957). The term “excitotoxicity” was coined in 1969 to describe this 

type of neuronal damage when similar effects were observed in neonatal mice (Olney, 1969). 

  In previous studies in both in vivo and ex vivo models, glutamate excitotoxicity via 

increased concentrations of glutamate in the eye has shown to lead to a prolonged influx of 

cations into RGCs, resulting in activation of apoptosis (Brandt et al., 2011; Asomugha et al., 

2010; Thompson et al., 2006). In the pig retina, glutamate has been demonstrated to bind to 

both NMDA and non-NMDA glutamate receptors, activating a calcium-induced cascade that 

ultimately results in RGC death through an apoptotic mechanism (Thompson et al., 2006). 

Although the specific role of glutamate excitotoxicity in the overall pathology of glaucoma 

remains unclear, drugs that target the prevention of this pathway have shown promise in 

preventing RGC apoptosis (Danesh-Meyer, 2011).  

With regards to glaucoma, neuroprotection is defined as an intervention administered 

to prevent any one of the previously proposed mechanisms from causing optic nerve damage 

or cell death (Danesh-Meyer, 2011). In recent years there have been numerous studies 
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conducted to explore the development of novel neuroprotective strategies. According to a 

review done by Prof. Helen Danesh-Meyer of the University of Auckland in 2011, 37 different 

neuroprotective therapeutic agents were tested on the glaucoma model from 2010-2011. Of 

these, a wide spectrum of RGC survival was attained through prevention of many of the 

aforementioned target pathways. Previous studies from this lab and others have demonstrated 

success in preventing RGC loss and axon degeneration through stimulation of nicotinic 

acetylcholine receptors (nAChR) within the mammalian retina (Iwamoto et al., 2013; Brandt et 

al., 2011; Thompson et al., 2006; Wehrwein et al., 2004).  

Previous studies have demonstrated that neuroprotection results from the activation of 

nicotinic acetylcholine receptors (nAChRs) with ACh or the receptor agonist, nicotine (Brandt et 

al., 2011; Asomugha et al., 2010; Bader and Linn, 2007; Thompson et al., 2006; Wehrwein et al., 

2004).  Further studies were then performed to investigate the intracellular mechanism of ACh 

neuroprotection. Results of these studies suggest that ACh provides RGC protection by directly 

stimulating an enzyme survival pathway, the PI3 kinase signaling pathway, and indirectly 

inhibiting an excitotoxic pathway, the p38 MAP kinase pathway (Asomugha et al., 2010). It is 

also hypothesized that this excitotoxic pathway which ACh inhibits is the same pathway that is 

up-regulated in the presence of glutamate, a known cause of excitotoxic processes throughout 

the CNS (Asomugha et al., 2010). 

To further address the effectiveness of ACh neuroprotection, an in vivo study was 

designed to test the role of ACh under physiologic conditions (Iwamoto et al., 2014). 

Specifically, the α7 nAChR agonist PNU-282987 (Tocris Bioscience, 2006) was administered via 
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eye drops to the intact eye of Long Evans rats. This compound was originally developed by 

Pfizer but sold when learned to have toxic effects systemically. Use of this substance in the 

retina remains a viable option as drugs administered in eye drop form have minimal systemic 

absorption. This was specifically tested by Linn et al. in 2011 in an in vivo model; PNU-282987 in 

eye drop form penetrates retinal tissue while trace amounts could be detected in blood plasma 

systemically (Linn DM et al., 2011; Farmen et al., 2011). Further results of in vivo use of PNU-

282987 in eye drop form in the intact retina demonstrated prevention of RGC loss in a dose-

dependent manner. This in vivo study utilized rats with surgically modified elevations in IOP to 

mimic glaucoma conditions.  When glaucomatous rats were treated with low-dose agonist in 

eye drop form for 30 days post-surgery there was no significant reduction in RGC loss. However, 

with a medium dose of agonist, significant neuroprotection resulted with total cell numbers 

approaching that of the control eye.  With a high dose, the percentage of RGCs increased in the 

experimental eye in comparison to the untreated control eye (Iwamoto et al., 2014).  

Under normal conditions, neurons are not actively dividing cells. In humans the majority 

of the neocortex is formed from stem cells before birth and neurogenesis ceases in adulthood. 

However, the application of PNU-282987, a nAChR agonist, at a high concentration dosage 

resulted in increased numbers of RGCs in the experimental eye as compared to the control eye 

(Iwamoto et al., 2014). The medium dose resulted in similar numbers of RGCs under high IOP 

conditions versus the control eye, suggesting successful use as a neuroprotective agent. Further 

research is needed to investigate the cause of increased RGC counts at a higher dose of this 

agonist. It is not clear if neurons are being induced to divide in a physiologic or pathologic 

manner. It is possible that oncogenes are being activated resulting in neoplastic growth masked 
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as increased numbers of RGCs.  It is equally possible that a normal growth factor pathway is 

being activated resulting in controlled differentiation (Linn CL et al., 2011).   

Expounding on these questions will be an important target of future research. If the 

nAChR agonist is indeed stimulating an enzyme pathway utilized in RGC survival and inhibiting 

the enzyme pathway utilized in excitotoxicity, these neuroprotective effects could be enhanced 

with the addition of a positive allosteric modulator (PAM). A PAM is a compound that binds to a 

site distinct from the agonist-binding site on the target receptor complex. This site on the 

receptor complex is called the allosteric site, and its binding serves to indirectly amplify the 

effect of an agonist at another discrete target (orthosteric) site on the same receptor complex. 

Generally this is performed through induction of a conformational change in the orthosteric 

binding site. In contrast to an orthosteric agonist, the allosteric modulator does not bind 

directly to the active receptor site and thus does not produce a direct agonist effect of its own 

(Schwartz & Holst, 2007). Instead, they enhance the sensitivity and/or efficacy of the receptor 

during agonist activation (Hurst et al., 2005). 

 The prototypic example of a positive allosteric modulator is Diazepam (Valium). 

Diazepam is a drug of the benzodiazepine class, which work by binding stereospecific 

benzodiazepine receptors on the postsynaptic GABA neurons, located at several specific sites 

throughout the CNS (Brunton, Chabner & Knollmann, 2011). Binding of Diazepam to a GABA 

neuron enhances membrane permeability to chloride ions and thus induces hyperpolarization 

and cell stabilization, but only in the presence of GABA. In the absence of natural GABA binding 

Diazepam exerts no effect. It cannot activate receptors that are not being activated and 
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therefore has a ceiling effect, allowing for a greater safety profile that other GABA agonists like 

barbiturates. In this study the α7 nAChR PAM, PNU-120596, is hypothesized to work in this 

same manner by enhancing the action of the α7 nAChR agonist, PNU-282987, at its target 

receptor. 

PNU-120596 is a novel positive allosteric modulator of the α7 nAChR which not only 

increases the potency and maximal efficacy of agonist but also is the first to demonstrate 

modification of neuronal activity in vivo (Hurst et al., 2005). Several PAMs of α7 nAChRs have 

been previously described; these agents function to minimize the rapid desensitization of α7 

nAChRs and maximize the peak evoked response that is characteristically induced by 

orthosteric agonists (Gill et al., 2013). The PAM used in this study comprises an entirely new 

class of PAM of the α7 nAChR as it the first drug of its kind to substantially modify the duration 

of agonist evoked response (Hurst et al., 2005). If the agonist in question, PNU-282987, 

provides neuroprotection to RGCs via binding to α7 nAChRs and up-regulating an enzymatic 

survival pathway, an α7 nAChR PAM should amplify and prolong these effects to provide 

enhanced protection from cell death. This study aims to address this hypothesis with the α7 

nAChR positive allosteric modulator, PNU-120596 (Tocris Bioscience). Further research in this 

field of study may have great implications in the search for a neuroprotective agent that can 

prevent, or even possibly reverse, the loss of RGCs associated with glaucoma. 
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Problem Statement 

 Glaucoma is one of the leading causes of blindness in the world. There has been a 

significant amount of research dedicated to finding a cure, however at this point none has been 

obtained.  The drugs currently on the market do not target the true cause of vision loss, but 

rather aim to slow the progression of severe neuron damage. With current IOP-lowering 

medications, RGC death can be slowed but not fully stopped. A compound that acts directly on 

the RGCs and their axons could be of benefit alone and in combination with current 

medications. An analysis of the cellular effect of an α7 nAChR agonist and PAM could reveal 

their effectiveness as a pharmacologic therapy to prevent the RGC loss associated with 

glaucoma at a cellular level. 

Aims of Study 

 The main objective of this study is to determine if the use of a positive allosteric 

modulator can amplify the survival of retinal ganglion cells treated with the nAChR agonist 

PNU-282987 under glaucomatous conditions. If amplified survival is achieved, further 

investigation into the role of known signaling cascades utilized by various combinations of 

agonist and PAM will be conducted.  

Significance of Study 

 Evaluation of the result of isolated RGC treatment with PNU-282987 and a PAM may 

reveal an increase in cell survival over the level which PNU-282987 can achieve as mono-

therapy. An amplification of cell survival would increase the clinical efficacy of this drug and 
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promote advancing research in this field of study. The researchers in this study aim to promote 

advancement in this field to develop a drug that can effectively prevent the death of RGCs 

associated with vision loss in glaucoma. 

Research Questions 

 Previously, in vitro glaucoma studies were conducted on RGCs that had their axons 

severed (axotomy) during removal of the eye globe in the course of dissection. Thus, 

one could hypothesize that the observed drop of RGCs in culture to a plateau level 

(Wehrwein et al. 2004) reflects this damage.  The addition of high levels of 

glutamate in previous studies leads to an additional drop observed with this system.  

Without the additional insult of glutamate, will an α7 nAChR agonist and PAM 

increase RGC survival under axotomy conditions?  

o Does the neuroprotection occur in a dose dependent manner?  

o Is the neuroprotection seen with the combination of drugs significantly 

higher than neuroprotection provided by agonist alone?  

o At which concentration of α7 nAChR agonist and PAM does optimal 

neuroprotection occur? 

 Previously, the α7 nAChR agonist has been proven to provide neuroprotection 

through stimulation of the PI3 kinase pathway resulting in phosphorylation of Akt 

and upregulation of Bcl-2 (Asomugha, Linn, & Linn, 2010). If the combination of α7 

nAChR agonist and PAM also provide neuroprotection, is it a result of activation of 

this same pathway?  
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o If so, is the effect of the α7 nAChR agonist enhanced by the presence of the 

PAM in an allosteric manner? Or, is an additional pathway activated? 
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CHAPTER 2 

LITERATURE REVIEW 

 

Introduction 

 Glaucoma is a devastating, worldwide disease. In just the United States there are over 2 

million estimated cases with 120,000 of those responsible for blindness. Unfortunately, only 

half of those 2 million people are estimated to be aware of their condition (Glaucoma Research 

Foundation, 2012). Angle-closure glaucoma is an acute condition associated with rapid onset of 

severe pain, erythema and visual loss, and thus emergent surgery is employed as a therapeutic 

intervention. In contrast, open angle glaucoma, the most common subtype of glaucoma, is an 

insidious process that results in slow, progressive, and irreversible loss of the visual field 

(Munemasa & Kitaoka, 2013).  Early stages of open angle glaucoma may be asymptomatic, 

allowing the disease to go unnoticed and progress to optic nerve damage. At this point no form 

of treatment can restore lost vision (Sena et al., 2010) and thus screening for at-risk individuals 

is vital in diagnosis. Still others will initiate treatment before this point of progression and still 

experience optic nerve damage as a result of inadequate treatment options. Unlike most other 

eye diseases, glaucoma is a lifelong neurodegenerative disorder that cannot be cured, only 

treated (American Glaucoma Society, 2013). 

 The inadequacy of pharmacological therapy for glaucoma has landed it at the forefront 

of numerous research studies in the recent past. According to a review done at the University 

of Auckland in 2011, 37 different therapeutic agents were tested on the glaucoma model from 

2010-2011 (Danesh-Meyer, 2011). The current medical strategy for treatment of glaucoma is 
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medication or surgery to decrease intraocular pressure (IOP) - a strategy proven to slow 

progression of the disease (The Ophthalmic News and Education Network, 2010). However, 

axon deterioration and visual field loss have been observed in eyes with normal or decreased 

IOP, suggesting that the disease process is at least partially independent of this variable 

(Munemasa & Kitaoka, 2013).  Despite these findings, reducing pressure in the eye remains the 

only proven pharmacological therapy to slow the progression of glaucoma (American Glaucoma 

Society, 2013). A true pharmacological cure for glaucoma is dependent upon the prevention of 

RGC death as these are the cells responsible for transmitting visual impulses along their axons 

to the visual processing center of the brain (Munemasa & Kitaoka, 2013).  

 Numerous strategies have been employed to prevent RGC death. These neuroprotective 

strategies and their corresponding pharmacological agents have been tested on pre-clinical 

animal models with varying success rates. One of the many challenges faced in development of 

a successful pharmacotherapy is lack of knowledge of the underlying mechanism of 

glaucomatous optic neuropathy (Danesh-Meyer, 2011). At this point in time considerable 

research is still aimed at discovery of the true cause of optic neuropathy, if a single cause does 

exist. Numerous methods of injury have been implicated including: oxidative stress, 

autoimmune regulation, glial cell activation, endoplasmic reticulum stress, endothelin receptor 

activation, neurotrophic factor deprivation, hypoperfusion of the optic nerve, and excitotoxicity 

(Kuehn et al., 2005; Danesh-Meyer, 2011; Munemasa & Kitaoka, 2013). Drugs have been 

successfully developed to target many of these injury processes with no specific therapy 

showing significant success over the others. With widespread promise demonstrated in cellular 
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and pre-clinical studies it is important to continue further research into narrowing the field of 

study and translating it to a clinical setting for therapeutic use (Danesh-Meyer, 2011).  

 In 2010 a review was published by the Cochrane Collaboration detailing the state of 

clinical advancement in neuroprotection as treatment for glaucoma in adults. The review was 

performed to systematically examine the effectiveness of topical and oral neuroprotective 

agents in prevention of RGC death in adults aged 30 years and older with open angle glaucoma. 

Selection criteria was limited to randomized controlled trials with a minimum five year follow 

up period in order to fully assess progression of visual field loss. Initial literature review 

returned 1716 articles and 29 were chosen for primary inclusion. After further evaluation none 

met the criteria for review (Sena et al., 2010). The results of this review reiterate the pressing 

need for further clinical research in the field of glaucomatous neuroprotection. Although a 

sufficient amount of cellular and animal research has been completed to date, very little has 

been carried out to the clinical phase with results to provide evidence of clinical importance. Of 

the 1716 articles initially returned, 15 potentially relevant trials were found with follow-up 

periods ranging from two hours to two and a half years (Sena et al., 2010). This is a step in the 

right direction although it is clear that further research needs to be directed into long-term 

visual field preservation as glaucoma is a progressive and lifelong disease (Sena et al., 2010).  

Comparative Literature 

As stated previously, there are currently many theories and strategies in regards to RGC 

and optic nerve injury and their appropriate treatment. One of those treatments investigated in 

the Department of Ophthalmology at Harvard Medical School is Etanercept, marketed as 
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Enbrel, a widely used tumor necrosis factor-α (TNF-α) antagonist (Roh et al., 2012). TNF-α is a 

pro-inflammatory cytokine that is secreted in response to infection and trauma and plays a role 

in apoptosis of susceptible cells throughout the body (Roh et al., 2012). Prior to this study by 

Roh et al., TNF-α was hypothesized to play a connecting role between increased IOP and RGC 

death although its exact role was unclear. To investigate the role of TNF-α, Roh et al. used an in 

vivo rat model with episcleral vein cauterization (EVC). This technique is used to elevate IOP 

through cauterization and generation of scar tissue in the drainage system of the eye with 

subsequent obstruction of outflow channels of aqueous humor resulting in rapid-onset 

elevations in IOP. EVC was performed on the right eye to simulate the glaucoma-like condition 

of elevated IOP, leaving the left eye untreated as a control. This is a widely-accepted and 

commonly used mechanism for glaucoma model experimentation in animals (Danesh-Meyer, 

2011). The TNF-α inhibitor was injected intraperitoneally and several parameters were 

measured post-sacrifice (Roh et al., 2012). 

 Results from this study were suggestive of further use of Etanercept as a 

neuroprotective agent for glaucoma. Eyes in rats subject to EVC demonstrated increased IOP 

with a subsequent dramatic increase in retinal TNF-α levels, axonal degeneration, and a 38% 

loss of RGCs (Roh et al., 2012). Eyes subject to EVC with Etanercept treatment also 

demonstrated reduced TNF-α levels and axon degeneration as well as near-control levels of 

RGCs. This study also determined that microglia cells activated by increased IOP are the source 

of TNF-α in the retina and therefore provide the foundation for activation of RGC apoptosis. 

Confirming both an increased level of TNF-α and a source for its production clarifies its role in 

RGC loss (Roh et al., 2012). The results of this study are significant because they identified both 
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a cause and treatment of RGC loss in a glaucomatous state, charting a path for future research 

into TNF-α antagonists as a treatment strategy for glaucoma.  

 Another theory in RGC degeneration is apoptosis as a result of hydrostatic pressure-

induced oxidative stress on the retina. To further evaluate this theory, researchers at Shandong 

University of Traditional Chinese Medicine studied the effects of alpha-lipoic acid (ALA), an 

agent proven to provide protection against neurodegenerative disorders in humans and 

experimental animals (Liu et al., 2012). The aim of study was to determine if ALA also produced 

the same neuroprotective effects in the retina under glaucoma-like conditions. The study was 

performed on an in-vitro model of cultured RGCs to determine if ALA provides the same 

neuroprotective effect for RGCs as it has proven to provide for neurons in other neurologic 

disorders related to oxidative stress such as Alzheimer’s disease, diabetic peripheral 

neuropathy, subarachnoid hemorrhage, and traumatic brain and spinal cord injury (Liu et al., 

2012). The in-vitro model is useful for glaucoma because it facilitates assessment of molecular 

changes and enzyme regulation of RGCs independent of environmental factors (Liu et al., 2012). 

Liu et al. first isolated RGCs, followed by pretreatment with varying concentrations of 

ALA (50 µM-200 µM). Pretreated and non-pretreated experimental cells were exposed to six 

hours of hydrostatic pressure (50 mmHg) while pretreated and non-pretreated control cells 

remained in a normal pressure environment. Results revealed cells that were subject to high 

pressure without ALA pre-treatment experienced increases in apoptosis and intracellular 

reactive oxygen species (ROS) production in comparison to non-pretreated control cells in a 

normal pressure environment. In contrast, cells pretreated with ALA experienced significant 
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reduction in ROS production and prevention of apoptosis through the mRNA expression of 

manganese superoxide dismutase (MnSOD), an antioxidant enzyme (Liu et al., 2012). MnSOD 

functions to counteract the injury inflicted by hydrostatic pressure through deactivation of ROS. 

Researchers concluded that pre-treatment with ALA significantly increased the expression of 

MnSOD leading to reduced production of ROS, resulting in inhibition of hydrostatic pressure-

induced RGC degeneration in a dose-dependent manner. Through its antioxidant activity, ALA 

supplementation has potential as a neuroprotective agent in glaucoma therapy. In addition, 

ALA has already been used for years in the treatment of diabetic peripheral neuropathy and has 

an established safety profile (Liu et al., 2012). Therefore, these results dictate further studies 

directed towards the therapeutic value of ALA for glaucoma in a clinical setting. 

Another recent theory suggests a correlation between glaucoma and Alzheimer’s 

disease, as both involve neuronal loss through an apoptotic process. To further assess this 

correlation, a team of Canadian researchers from universities in Quebec and Nova Scotia 

worked together to study the effectiveness of the Alzheimer’s drug Galantamine as a 

neuroprotective agent for RGCs (Almasieh et al., 2010). Galantamine is an acetylcholinesterase 

(AChE) inhibitor and allosteric ligand of nAChRs that is used for symptomatic treatment of 

Alzheimer’s. Through inhibition of AChE, the drug prevents breakdown of ACh and allows ACh 

levels in the retina to increase and supposedly counteract the functional loss of cholinergic cells 

due to disease process. Increased levels of ACh have proven to provide neuroprotection 

through increased stimulation of AChRs in vitro. The mechanisms of neuroprotection in vivo 

remain poorly defined, but results have proven that Galantamine increases survival of 

hippocampal neurons and dopaminergic neurons in the treatment of Alzheimer’s. To determine 



28 
 

if its neuroprotective effects translate to the treatment of glaucoma, an in vivo rat model was 

used. Rats were subjected to elevated IOP through limbal vein obliteration via hypertonic saline 

injection to mimic the effects of glaucoma. Treatment with Galantamine produced significant 

neuroprotection for RGCs under these conditions (Almasieh et al., 2010).  

Researchers next evaluated the functional effect of Galantamine on RGCs through 

measurement of visual evoked potentials (VEP) after flash stimulation (Almasieh et al., 2010). 

VEPs are evaluated by a recording electrode placed on the visual cortex which receives 

predominantly RGC input, and therefore serve as a functional assay to determine if RGCs that 

demonstrate structural protection also demonstrate functional protection. Initial results 

revealed that both phosphate buffered saline (PBS)-treated and Galantamine-treated eyes 

showed complete obliteration of VEPs five weeks post-EVC, despite a structural protection rate 

of 70% of RGCs with Galantamine treatment. Researchers hypothesized that visual impairment 

was mediated by sustained elevations in IOP and tested their hypothesis with a combination 

therapy of Galantamine and Timolol, a topical β-adrenergic receptor blocker commonly used in 

glaucoma therapy to decrease IOP. This combination therapy restored 47% of the VEP response 

in Galantamine/Timolol treated eyes compared to a 0% response in PBS/Timolol treated eyes. 

Lastly, researchers determined the mechanism of action of Galantamine through selective 

pharmacological blockade of the two hypothesized pathways, nAChRs or muscarinic AChRs 

(mAChRs). Galantamine provides neuroprotection in Alzheimer’s treatment through activation 

of nAChRs, however results proved neuroprotection of RGCs was mediated through mAChRs 

(Almasieh et al., 2010).  
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This study produced important findings in the search for an effective pharmacological 

therapy for glaucoma. First, Galantamine proved to be an effective pharmacological therapy in 

the protection of RGCs in an in vivo model of glaucoma. Second, functional deficits seen in 

glaucoma were markedly improved by a combination therapy of Galantamine and a β-

adrenergic receptor blocker. This supports further research into the use of novel 

neuroprotective drugs in combination with currently used IOP-lowering drugs for long term 

functional RGC protection and subsequent visual field preservation. Finally, Galantamine’s 

effect was modulated by mAChRs, suggesting further research into their use as a therapeutic 

target for prevention of RGC death and visual loss associated with glaucoma (Almasieh et al., 

2010). 

Summary and Implications for Study 

For the past decade, research has been conducted in this lab with the purpose of 

determining the cause and prevention of RGC degeneration associated with glaucoma. Studies 

have been directed at the prevention of neuronal degeneration as a result of glutamate-

induced excitotoxicity, one of the major theories behind glaucomatous optic neuropathy, as 

well as other implicated degeneration models. Previous studies have identified an excess of 

glutamate in the vitreous humor of eyes affected by glaucoma, and that excess glutamate has 

been proven to lead to a prolonged influx of nonspecific cations that activate pathways of 

apoptosis within RGCs (Dryer et al., 1996). In a previous study, glutamate excitotoxicity was 

tested on an in vitro model of isolated pig RGCs exposed to 500μM L-glutamate for various time 

periods. By day 3, cells exposed to chronic glutamate had a mean 58% survival rate as 
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compared to untreated isolated cells, suggesting glutamate had an excitotoxic effect on 42% of 

isolated RGCs after a 72 hour period (Wehrwein et al., 2004). Further research determined this 

excitotoxic effect was mediated through activation of both NMDA and non-NMDA glutamate 

receptors (Wehrwein et al., 2004). 

Next, a neuroprotective strategy was developed to prevent neuron degeneration 

associated with glutamate excitotoxicity. As stated in the previous study, nAChRs are 

considered to play a role in neuroprotection of hippocampal and cortical neurons in Alzheimer’s 

therapy, although the exact mechanism of neuroprotection is unclear. Agonists of nAChRs, 

acetylcholine (ACh) and nicotine, were tested for neuroprotective effectiveness on glutamate-

induced excitotoxicity in the retina. Results showed increased RGC survival as a result of 

pretreatment with ACh or nicotine before chronic glutamate exposure. Further 

experimentation in combination with previous evidence suggested the neuroprotective effect 

of the nAChR agonist was mediated through α7 nAChRs (Wehrwein et al., 2004). These findings 

have since been supported with further research and expanded to include a potential 

additional role of α4 nAChRs (Thompson et al., 2006). 

Subsequent research was aimed at determining the mechanism of correlation between 

nAChRs and neuroprotection. Two signaling pathways were hypothesized to be involved: p38 

MAP kinase and PI3 kinase (Asomugha et al., 2010). The p38 MAP kinase pathway is associated 

with inflammation and apoptosis. On the other hand, PI3 kinase is involved in a pathway that 

induces activation of two other proteins that are actively involved in cell survival processes. 

ELISA studies were performed on cultured pig RGCs and results revealed that glutamate 
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excitotoxicity is mediated through the p38 MAP kinase signaling pathway while ACh 

neuroprotection is mediated through stimulation of the PI3 kinase pathway and inhibition of 

the p38 MAP kinase pathway (Asomugha et al., 2010). Further research revealed that the PI3 

kinase survival pathway is activated by calcium permeation through nAChR channels activated 

by an ACh agonist. Therefore, calcium is the trigger linking activation of nAChRs to activation of 

neuroprotection (Brandt et al., 2012).  

The next step was to evaluate an in vivo model to determine if ACh had a 

neuroprotective effect under physiological conditions. A rat model was used and rats were 

subject to limbal vein obliteration via hypertonic saline injection (Iwamoto et al., 2014) as was 

used by Almasieh et al. in the galantamine study described previously. Injection of a hypertonic 

solution leads to scarring of vessel lumen, decreasing diameter and increasing resistance to out-

flow. This technique is similar to the EVC technique described in previous studies as the 

outcome of both procedures is resistance to aqueous humor drainage and ensuing elevation of 

IOP mimicking glaucoma. EVC is rapid process with cauterization resulting in complete 

obliteration; this in contrast to limbal vein occlusion which is a much more gradual process 

taking up to a month for scarring to obliterate the venous lumen. Using the limbal vein 

occlusion procedure, an α7 nAChR agonist, PNU-282987, was applied in eye drop form for 30 

days post-procedure to 3 different dosing groups. Results revealed that rats treated with low-

dose agonist for 30 days post-surgery experienced no significant reduction in RGC loss. 

However, with a medium dose of agonist significant neuroprotection resulted, and with a high 

dose the percentage of RGCs increased in comparison to the untreated control eye (Iwamoto et 
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al., 2014). These results support the use of a nAChR agonist for RGC neuroprotection and raise 

the ensuing question of the mechanism of increased RGC counts in the high dose agonist group.  

This study aims to further elucidate the mechanism of nAChR agonist neuroprotection in 

the absence of additional elevated glutamate insult, as well as to examine the effectiveness of 

the nAChR agonist in combination with a positive allosteric modulator (PAM). A PAM is a ligand 

that binds an allosteric site distinct from the agonist-recognition site on its target receptor. It 

has no agonistic activity when applied alone, but enhances the activity of agonist-evoked 

responses when co-applied with an orthosteric agonist (Gill et al., 2013). In the setting of this 

study, the application of a specific PAM of the α7 nAChR, PNU-120596, in combination with the 

α7 nAChR agonist PNU-282987 should theoretically potentiate an increased neuroprotective 

response.  To test this hypothesis an in vitro model of isolated porcine RGCs will be used. The 

same enzyme pathways implicated in previous study, p38 MAP kinase and PI3 kinase, will be 

analyzed in the setting of both a nAChR agonist and PAM.  

As previously stated, the p38 MAP kinase pathway is associated with inflammation and 

apoptosis while the PI3 kinase pathway is involved in cell survival processes (Asomugha et al., 

2011). ELISA studies provided evidence to support glutamate’s role in excitotoxic cell death 

through the p38 MAP kinase pathway that ultimately decreases levels of Bcl-2, an anti-

apoptotic regulator protein. Studies also provide evidence of the PI3 kinase pathway in 

phosphorylation of Akt, which ultimately leads to increased expression of Bcl-2 (Asomugha et 

al., 2011). If a nAChR agonist and PAM indeed provide neuroprotection by these enzyme 

pathways, the neuroprotection would be eliminated in the presence of a Bcl-2 inhibitor. This 
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concept will be the one of the main focuses of this study. Further elucidation of the role of 

nAChR agonists, specifically in the presence of a PAM, will be beneficial in the search for novel 

pharmacotherapeutic strategies for glaucoma.  

Throughout the course of this study several hypotheses are tested, and these can be 

summarized into five major parameters. First, in the absence of an elevated glutamate insult 

the presence of an α7 nAChR agonist will increase RGC survival over control levels after three 

days in culture. Second, RGC survival will be enhanced in the presence of an α7 nAChR PAM in 

combination with the aforementioned agonist. Third, the increased RGC survival mediated by 

PI3 kinase will be completely or nearly completely inhibited by a specific PI3 kinase inhibitor, LY 

294002, in the presence of agonist alone or in combination with a PAM. Forth, the increased 

cell survival expected via blockade of the cell death pathway, p38 MAP kinase, will be more 

than observed for PI3 kinase inhibition. Fifth, Bcl-2 serves as the final target protein for the 

increased survival mediated by PI3 kinase, thus inhibition of this protein will result in inhibition 

of the cell survival mediated by PI3 kinase. Determination of the mechanism of cell survival 

through evaluation of these pathways is crucial in understanding the pathway to and facilitating 

the development of a clinically effective neuroprotective treatment for glaucoma.   
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CHAPTER 3 

METHODOLOGY 

 

RGC Isolation Procedure 

The study was performed using an in vitro preparation of isolated RGCs from adult 

porcine eyes. The eyes were obtained from a local slaughterhouse (DeVries Meats, 

Coopersville, MI) and kept on ice during transfer to the Cook-DeVos Center for Health Sciences 

at Grand Valley State University. Severance of the optic nerve occurs upon removal of the eye 

from its anatomic location in the orbit, therefore this mechanism of injury was employed even 

before attaining eyes for dissection. Upon arrival the retina was dissected away from the 

choroid and sclera posteriorly. Four retinas were then prepared for further dissociation using a 

two-step panning process previously described by Wehrwein et al. (2004), Thompson et al. 

(2006) and Asomugha et al. (2011). The panning process is schematically displayed in Figure 1. 

To begin, isolated retinas were placed into a solution of CO₂-independent media (Gibco) 

enriched with 4 mM glutamine, 5% fetal bovine serum (FBS), 5% antibiotic/antimycotic (Gibco) 

and 4 mM HEPES. The retinas were each cut into eight pieces and enzymatically dissociated 

with papain (27 u/mg) activated with cysteine for 20 minutes at 37°C. After 20 minutes the 

enzymatic dissociation was inactivated with the addition of fresh CO₂-independent media and 1 

mg/ml DNase to break up free DNA released from damaged cells. Physical dissociation by 

titration and centrifugation for 2 minutes at 2000 rpm completed the retinal dissociation 

process.  
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The enzymatically and physically dissociated retinas were then transferred onto Petri 

dishes pretreated with goat anti-rabbit IgG antibody (Jackson ImmunoResearch; 0.5 mg in 48 ml 

of 20 mM Tris buffer). Petri dishes were prepared 24 hours prior by application of IgG antibody 

evenly dispersed over the surface of four large (150 x 15 mm) Petri dishes, which were then 

kept at 4°C overnight. On the day of experimentation, IgG-treated Petri dishes were washed 

with three rinses of PBS and one rinse of PBS with 0.2% BSA. After 60 minutes of incubation 

with PBS with 0.2% BSA this rinse was removed and dissociated retinas were applied. 

Dissociated retinas were incubated on IgG-coated plates for 1 hour at 37° C to bind nonspecific 

cellular content such as vascular tissue within the dissociated retina. This completed the first 

step in the panning procedure. 

After incubation for one hour, media containing unbound RGCs was removed from IgG-

coated plates and transferred to Petri dishes pretreated with goat anti-mouse IgM (Jackson 

ImmunoResearch; 0.3 mg in 48 ml of 20 mM Tris buffer) and mouse anti-rat Thy 1.1 antibody 

(BD Biosciences; 10 µg in 10 ml PBS containing zero calcium and zero magnesium). These plates 

were prepared in a similar manner as described previously with application of IgM antibody to 

twelve small (60 x 15 mm) Petri dishes 24 hours prior to experimentation. On the day of 

experimentation Ig-M coated plates were further prepared by removing excess IgM and 

applying Thy 1.1 antibody (0.165 µg in 48 ml of 20 mM Tris buffer). Thy 1.1 antibody is used 

because Thy 1.1 antigen is a RGC-specific marker in the retina (Asomugha et al., 2011). After 

incubation for 60 minutes at 37° C, excess Thy 1.1 was removed and dishes were washed with 

three rinses of PBS and one rinse of PBS with 0.2% BSA. After an additional 60 minutes of 

incubation at 37° C the final rinse was removed and dishes were ready for tissue. The dishes 
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were incubated with remaining retina contents for 1 hour at 37°C; after this period RGCs were 

bound to Thy 1.1 on the dishes and the supernatant containing unbound cells was then 

removed and discarded. This completed the second and final step in the panning procedure as 

the RGCs were bound to plates treated with Thy 1.1 antibody and therefore isolated from all 

other retinal tissue. Fresh CO₂-independent media containing glutamate, FBS, 

antibiotic/antimycotic, and HEPES was further enriched with nerve growth factor (0.3 µg/ml), 

transferrin (1 µg/ml), and insulin (6 µg/ml) and added to the dishes to nourish isolated RGCs.  

This isolation process has been thoroughly established and studied by Wehrwein et al. 

who demonstrated that RGCs isolated in this nature, subject only to injury via optic nerve 

severance, die off in a predicable manner over time. In enriched CO₂-independent media, 

survival of RGCs with severed axons gradually decreases from 100% to a plateau at 61% survival 

over the first 7 days in culture (Wehrwein et al., 2004). This model allows for evaluation of RGC 

survival in the absence of the additional variable of added insult, much in the manner that an in 

vivo study would employ.  
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Figure 1. Schematic of panning and RGC isolation protocol. IgM plates contain Thy 1.1 antibody 
which binds Thy 1.1 antigen that is specific for retinal ganglion cells. RGCs remain bound to the 
twelve IgM plates while all other retinal content is removed and discarded. Fresh media is 
applied to each of the twelve plates in preparation for pharmacologic treatment. Plates A are 
left untreated as control while Plates B, C & D receive pharmacologic treatment. 
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Experimental Design 

Before final incubation the isolated RGCs were treated with an α7 nAChR agonist, PNU-

282987 (Tocris, 10 µM in PBS), and varying doses of an α7 nAChR PAM, PNU-120596 (Tocris, 10 

µM in PBS) to evaluate their effectiveness as neuroprotective agents for RGCs. Dosage of 

agonist sufficient for neuroprotection was a subject of previous study by Bader and Linn, 2007, 

therefore an effective dose of 100 nM agonist was utilized throughout this experiment. Five 

experimental conditions were performed throughout the course of this study. Conditions 1 & 2 

involved agonist and differing doses of PAM. Condition 1 tested the effect of increasing doses 

of PAM and agonist while Condition 2 tested extreme doses of PAM to further evaluate its role 

in neuroprotection. Because a PAM is an allosteric ligand it is proposed to have no effect when 

working alone; this hypothesis is tested in treatment group D of Condition 2.  

Conditions 3, 4 & 5 involved pre-treatment with enzyme pathway inhibitors prior to 

application of agonist and PAM. The enzyme pathway inhibitors served to evaluate the 

involvement of potential cell signaling cascades implicated in the aforementioned excitotoxic 

and neuroprotective pathways. By pre-treating with one inhibitor per experiment, a single 

enzyme or protein’s effect can be evaluated. Two enzymes and one protein were evaluated 

throughout the course of this study. PI3 kinase, p38 MAP kinase, and Bcl-2 were inhibited in 

Conditions 3, 4 & 5, respectively. A schematic of proposed enzyme pathway involvement in RGC 

neuroprotection is provided in Figure 2. All five experimental conditions were completed with a 

control variable (A) and three experimental variables (B, C & D); three dishes were created for 
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each variable totaling 12 dishes in each experiment. The five experimental conditions are 

further described in Table 1. 

  

 
 
Figure 2. The proposed mechanism of neuroprotection of RGCs is illustrated on the right side of 
diagram. PNU-282987 has been shown to utilize a binding site on nAChR to initiate an influx of 
Na⁺ and Ca²⁺ and activate PI3 kinase. Ultimately, PI3 kinase activation promotes Bcl-2, an anti-
apoptotic protein. The PAM binds to an allosteric transmembrane site on the nAChR and is 
proposed to act in an allosteric manner by increasing the influx of Na⁺ and Ca²⁺ in the presence 
of PNU-282987 binding. If this is the true mechanism of action the PAM would have no activity 
in the absence of PNU agonist. It is also possible that the PAM works through a different 
unidentified pathway; this hypothesis is tested in Condition 2. The left side of the diagram 
illustrates a proposed mechanism of excitotoxicity. Through activation of p38 MAP kinase, the 
excitotoxic pathway inhibits Bcl-2 and thus promotes apoptosis. Activation of the PI3 kinase 
pathway has inhibitory effects on this action of p38 MAP kinase. 
 
 
 
 
 

Cellular injury 
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Pharmacological Treatment 
 

Doses used in all five conditions can be found in table format in Table 1. Doses of PNU-

282987 agonist sufficient for use as a neuroprotective agent were previously studied by Bader 

and Linn, 2007, and employed in this study. In Condition 1 (n=9) the following pharmacologic 

doses were used: A) cells were left untreated as a control, B) cells were treated with 100 nM 

agonist, C) cells were treated with 100 nM agonist and 50 nM PAM, and D) cells were treated 

with 100 nM agonist and 100 nM PAM. In Condition 2 (n=6) the following pharmacologic doses 

were used: A) cells were left untreated as a control, B) cells were treated with 100 nM agonist, 

C) cells were treated with 100 nM agonist and 20 nM PAM, and D) cells were treated with 100 

nM PAM alone. In Condition 3 plates B, C & D were pre-treated with 10 nM LY 294002 to inhibit 

PI3 kinase. After 30 minutes the following pharmacologic doses were used: A) cells were left 

untreated as a control, B) cells were treated with 100 nM agonist, C) cells were treated with 

100 nM agonist and 50 nM PAM, and D) cells were treated with 100 nM agonist and 100 nM 

PAM. Conditions 4 & 5 were performed in an identical manner to Condition 3 but a different 

enzyme inhibitor was used for pre-treatment in each. Condition 4 utilized treatment with 10 

nM SB 203580 to inhibit p38 MAP kinase. Condition 5 utilized treatment with 10 nM ABT 199 to 

inhibit Bcl-2. After application of inhibitor and/or drugs, cells were incubated at 37°C for three 

days. An illustration of the enzyme inhibitor experiments, Conditions 3-5, is found in Figure 3. 
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Experimental 
Condition 

A B C D 

Condition 1 Control 100 nM agonist 100 nM agonist 
50 nM PAM 

100 nM agonist 
100 nM PAM 

Condition 2 Control 100 nM agonist 100 nM agonist 
20 nM PAM 

 
100 nM PAM 

Condition 3 Control 10 nM LY 294002 
100 nM agonist 

10 nM LY 294002 
100 nM agonist 
50 nM PAM 

10 nM LY 294002 
100 nM agonist 
100 nM PAM 

Condition 4 Control 10 nM SB 203580 
100 nM agonist 

10 nM SB 203580 
100 nM agonist 
50 nM PAM 

10 nM SB 203580 
100 nM agonist 
100 nM PAM 

Condition 5 Control 10 nM ABT 199 
100 nM agonist 

10 nM ABT 199 
100 nM agonist 
50 nM PAM 

10 nM ABT 199 
100 nM agonist 
100 nM PAM 

 

Table 1. Pharmacologic treatment as classified by experimental condition. 
 
 

Figure 3. Demonstration of enzyme inhibitor experiment mechanism of action. In Condition 3, 
LY 294002 is used to inhibit PI3 kinase, which is proposed to up-regulate the anti-apoptotic 
protein, Bcl-2. In Condition 4, SB 203580 is used to inhibit p38 MAP kinase, which is proposed to 
inhibit Bcl-2. In Condition 5, ABT 199 is used to inhibit Bcl-2 itself.  
 

Suppression of 

apoptosis 
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Equipment and Instruments 

 After a three day incubation period, pharmacologically treated and untreated RGCs 

were labeled with 2 µM of membrane-permeable calcein, a fluorescent dye, for visualization 

with fluorescence microscopy. Cells treated with calcein were incubated at 37°C for 30 minutes 

to fluorescently label viable cells (Asomugha et al., 2011). Microscopy was performed with a 

Nikon Diaphot epifluorescent research microscope illuminated by a 100-W mercury arc lamp 

with an excitation filter FITC 460-490, dichroic mirror DM 580 and barrier filter BA 590. Images 

were captured using a Hamamatsu XC-77 CCD camera and QCapture Pro 7 imaging system from 

Image Analysis, Inc. To quantify cell density, four pictures of fluorescent cells were captured at 

a consistent magnification from a predetermined location (12, 3, 6 and 9 o’clock positions) on 

each dish. The number of cells in each of these four pictures was counted and averaged to 

obtain a total representative of cell survival on each dish.  

Data Analysis 

 The number of viable cells in each image was counted using Image-Pro software from 

Media Cybernetics, Inc. An average was calculated for the four images captured for each dish, 

and this average value was obtained for each of the 12 dishes in each experiment. Although all 

RGCs were originally isolated under the same conditions, there is some variation in cell death 

between experiments due to aspects of the dissociation process such as titration, variation in 

time between eye removals and culture, etc. (Asomugha et al., 2011). Comparison of 

experimental cell survival to untreated control survival within the same experiment eliminated 

this variation between experiments. Data was organized such that randomized complete design 
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with subsampling could be performed (Hinklemann & Kempthorne, 1994). Statistical analysis 

was implemented on non-normalized data using two-way analysis of variance (ANOVA) with 

interaction between plate and treatment. A P-value of less than 0.05 was considered 

statistically significant for all tests.  

 Results of this study are limited to an evaluation of RGCs in isolation and extrapolation 

to an in vivo system should be used with caution. However, this allows for true evaluation of 

the effectiveness of pharmacological therapy and involvement of targeted enzyme pathways in 

the absence of confounding variables. There are also numerous steps throughout the 

dissociation process that leave room for human error in procedure. Nonetheless, consistent 

results utilizing this technique have been published in several peer-reviewed journals. In 

addition, only specific enzyme pathways were targeted for study. Involvement of other enzyme 

signaling pathways were neither detected nor analyzed. 
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CHAPTER 4 

RESULTS 

 

Cell Survival in Response to Pharmacotherapy 

 Experimental Conditions 1 & 2 investigated the effects of varying doses of α7 nAChR 

agonist and PAM in an in vitro model of glaucoma using isolated RGCs.  A membrane-

permeable fluorescent dye, calcein, was taken up by viable cells and results viewed under 

fluorescence microcopy. An example of the results obtained following this procedure is shown 

in Figure 4. Statistical analysis was used to evaluate significant differences in cell survival 

between variables A, B, C & D within each experiment. Condition 1 (n=9) compared viable cells 

in control plates to those in plates with agonist alone (B), agonist and low-dose PAM (C), and 

agonist and high-dose PAM (D). Control plates (A) contained a significantly lower amount of 

viable cells than did all other pharmacologically-treated plates in Condition 1 (p<0.0001). The 

difference among plates (1, 2 & 3) within each treatment group (A, B, C & D) was not 

statistically significant (p=0.8069) and there was no interaction between plate and treatment 

(p=0.1562). This is a testament to the precision of experimental results and is true for all five 

experimental conditions as none produced a p-value for interaction less than the accepted 

value of 0.05. 

 Figure 4 demonstrates images taken from treatment groups A, B, C & D of a Condition 1 

experiment. Pictures demonstrate viable RGCs stained with calcein three days after isolation. 

There is a noticeable and direct increase in viable cells sequentially from A to D that 

corresponds with increasing doses of pharmacotherapy. The least squares means for viable 
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cells of Condition 1 are as follows: treatment A = 34.73 (± 2.29), treatment B = 44.29 (± 3.39), 

treatment C = 48.96 (± 3.75), treatment D = 50.12 (± 5.13). Control group A was statistically 

distinct from experimental variables B (p<0.01), C (p<0.01) and D (p<0.01), however B, C & D 

were not statistically significant from each other. Addition of a low or high-dose PAM in these 

experiments did produce a noticeable increase in the survival of RGCs, and although not 

statistically significant, resulted in a 14.9-23.3% increase in mean cell survival over agonist 

alone. 

    

  

 

 

 

 

 

 

Figure 4. Images obtained from similar locations on Plates A, B, C & D of a single experiment. 
Viable cells take up calcein dye and fluoresce under fluorescence microscopy with FITC 
excitation filter (460-490). Images were analyzed with QCapture Pro Imaging system and cell 
counts were obtained with Image-Pro software. A) cells were left untreated as a control, B) cells 
were treated with 100 nM agonist, C) cells were treated with 100 nM agonist and 50 nM PAM, 
and D) cells were treated with 100 nM agonist and 100 nM PAM. 
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Condition 2 differed from Condition 1 in the dosages of agonist and PAM used. In 

Condition 2, treatment C contained very low dose concentration of PAM with agonist and 

treatment D contained PAM without any agonist. The least squares means for viable cells of 

Condition 2 are as follows: treatment A = 35.10 (± 3.93), treatment B = 44.35 (± 5.07), 

treatment C = 62.96 (± 15.44), treatment D = 36.01 (± 5.73). Control group A was statistically 

distinct from experimental variables B (p<0.01) and C (p<0.01), but not from D (p=0.38). In 

treatment group D with PAM without any agonist, cell survival was nearly equal to that of 

control. A comparison of the results from Condition 1 and Condition 2 can be found in Figure 5. 
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Figure 5. Summary of results obtained in Conditions 1 & 2. Cell counts for each treatment group 
were compared to internal controls to obtain a percent change. Percent change values were 
averaged to produce results displayed above. For Condition 1, treatment groups B, C, and D 
produced a 28.8%, 43.7%, and 52.0% increase in cell survival, respectfully. For Condition 2, 
treatment groups B, C, and D produced a 28.7%, 72.4%, and 3.2% increase in cell survival, 
respectfully. Error bars represent standard error. Refer to Table 1 for a breakdown of 
pharmacologic treatment groups.  
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Enzyme Inhibitors Produce a Change in Cell Survival Response 

 Conditions 3, 4 & 5 were conducted to analyze and evaluate proposed mechanisms of 

enzyme pathway involvement in RGC neuroprotection. In Condition 3 experiments, treatment 

groups B, C & D received pre-treatment with LY 294002 to inhibit PI3 kinase. PI3 kinase is 

proposed to play a role in the ACh neuroprotection pathway; therefore, the hypothesized 

finding for this condition would be a decrease in neuroprotection and subsequently no survival 

difference between control plates and pharmacotherapy plates. Statistical analysis of Condition 

3 (n=4) revealed no significant difference in cell survival between control and treatment groups 

B, C & D (p= 0.052, p=0.32, p=0.31, respectively). Least squares means for the treatment groups 

were as follows: treatment A = 19.75 (± 5.26), treatment B = 24.56 (± 7.60), treatment C = 18.58 

(± 5.62), treatment D = 20.90 (± 5.12). This result is graphically displayed in Figure 6. 

 Condition 4 was conducted under similar methods but utilized the compound SB 203580 

to inhibit p38 MAP kinase. This enzyme plays a role in the glutamate pathway that is proposed 

to participate in excitotoxicity and subsequent RGC death in a glaucomatous state. The 

hypothesized finding through inhibition of p38 MAP kinase is a decrease in toxic insult and 

subsequent increase in cell survival. Statistical analysis of Condition 4 (n=4) revealed control 

group A was statistically distinct from experimental variables B (p<0.01), C (p<0.01) and D 

(p<0.01), however B, C & D were not statistically significant from each other. Least squares 

means for the treatment groups were as follows: treatment A = 23.19 (± 3.38), treatment B = 

33.65 (± 9.15), treatment C = 29.29 (± 4.99), treatment D = 32.00 (± 6.08). The result is 

graphically displayed in Figure 6. 
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 Finally, Condition 5 mirrored Conditions 3 & 4 but utilized the compound ABT 199 to 

inhibit Bcl-2. Bcl-2 is a regulator protein involved in the suppression of apoptosis; it is proposed 

to play a role in the ACh neuroprotection pathway targeted by PNU-282987. As such, inhibition 

of Bcl-2 would result in suppression of neuroprotection on pharmacologically-treated plates 

and similar cell survival between control and experimental variables. Statistical analysis of 

Condition 5 (n=4) revealed no significant difference in cell survival between control and 

treatment groups B, C & D (p= 0.27, p=0.39, p=0.37, respectively). Least squares means for the 

treatment groups were as follows: treatment A = 50.00 (± 16.8), treatment B = 56 (± 17.75), 

treatment C = 53.04 (± 16.97), treatment D = 53.63 (± 13.10). The result is graphically displayed 

in Figure 6 alongside the results of Conditions 3 & 4.  
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Figure 6. Comparison of RGC counts in enzyme inhibitor experiments. There was no statistically 
significant difference among the treatment groups in Conditions 3 or 5. In Condition 4 the experimental 
variables B, C, and D were all statistically significant from control. Error bars represent MSE. 
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CHAPTER 5 

CONCLUSION 

 

Neuroprotection 

This study was designed to test the neuroprotective properties of a specific nAChR 

agonist, PNU-282987, in combination with a positive allosteric modulator, PNU-120596, in a cell 

culture model of glaucoma. In previous studies using cultured porcine RGCs and in vivo rat 

RGCs, ACh and nicotine have demonstrated neuroprotection through activation of the α7 

nAChR (Wehrwein et al., 2004, Thompson et al. 2006, Iwamoto et al., 2013). The goal of this 

study was to replicate these results and evaluate the additive effect of an allosteric modulator 

that is specific for the α7 receptor. Treatment of cells with the α7 nAChR agonist prior to 

incubation resulted in an increase in cell survival, as seen in previous experiments. This increase 

was statistically significant. Addition of the PAM produced a dose-dependent increase in cell 

survival over that of agonist alone, also statistically significant compared to control. The 

combination of agonist and PAM was not statistically significant over agonist alone; however, 

the trend of increased neuroprotection with dose-dependent PAM is evident in the data.  PAM 

in absence of agonist produced no change in cell survival, suggesting that the PAM works 

allosterically as hypothesized. Much in the same way a benzodiazepine like Diazepam (Valium) 

works to modulate the GABA receptor, PNU-120596 likely works to increase the effect of the 

agonist rather than producing an additive neuroprotective effect of its own. 
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As mentioned previously, there are many theories pertaining to the mechanism of cell 

death associated with glaucoma. Previous studies in this lab have focused on a model of 

excitotoxicity related to overstimulation of cellular receptors by the neurotransmitter, 

glutamate. In this study no additional insult (i.e. excess glutamate) was employed. Prior to 

retinal dissociation and culture, the axons of all retinal RGCs were severed via cut of the optic 

nerve. RGCs die off in a gradual, predictable pattern in this model as described by Wehrwien et 

al. in 2004. In this study, agonist and PAM provided neuroprotection for RGCs in the absence of 

a specific insult, suggesting their use is not limited to an excitotoxic model. While release of 

excess glutamate from injured cells may still be the insult producing cell death, it is possible 

that another proposed mechanism is responsible for RGC death (i.e.  oxidative stress, 

autoimmune regulation, glial cell activation, endoplasmic reticulum stress, endothelin receptor 

activation, neurotrophic factor deprivation, or hypoperfusion of the optic nerve). Treatment 

with α7 nAChR agonist and PAM provide neuroprotection for RGCs in a model of nonspecific 

cellular injury which suggests their usefulness as a neuroprotective agent may extend to injured 

neurons regardless of mechanism of injury. 

Mechanism of Action 

A previous study by Asomugha et al. utilized ELISA techniques to evaluate the enzymatic 

pathways utilized by the α7 nAChR. This previous study revealed that ACh neuroprotection is 

mediated through stimulation of the PI3 kinase       Akt             Bcl-2 pathway as well as 

inhibition of the p38 MAP kinase pathway. Conversely, glutamate excitotoxicity is mediated 

through stimulation of the p38 MAP kinase signaling pathway. To evaluate the additive effect of 
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a PAM on this model, specific enzyme inhibitors for PI3 kinase, p38 MAP kinase, and the final 

protein target of both pathways, Bcl-2, were added to cell culture prior to incubation. When PI3 

kinase was blocked in this study, the cell survival of RGCs in agonist and agonist + PAM groups 

was similar to that of control. The neuroprotective effect of agonist and PAM was completely 

eliminated in the absence of PI3 kinase. This finding suggests that neuroprotection by the 

combination of agonist and PAM is mediated through PI3 kinase, as is agonist alone.  

Although glutamate was not specifically added to culture to evaluate its role in cell 

death through excitotoxicity, an inhibitor for the hypothesized cell death pathway was tested. 

P38 MAP kinase plays a role in cell death through down-regulation of Bcl-2, or antagonistic 

effect of the PI3 kinase pathway (Asomugha et al. 2010). When p38 MAP kinase was blocked, 

RGC cell survival in agonist and agonist + PAM groups was significantly increased as compared 

to control, however not to the level of survival seen in its presence. This result raises questions 

about the interaction between the p38 MAP kinase death pathway and the PI3 kinase survival 

pathway. Does the PI3 kinase pathway require some input from p38 MAP kinase to substantiate 

its neuroprotective properties? Or, is the action of the p38 MAP kinase pathway different in the 

absence of an added glutamate insult? It is also possible that blocking cell death is different 

from increasing cell survival, and thus a significant increase in cell survival is not to be expected. 

That is, the p38 MAP kinase cell death pathway may play a direct role in decreased numbers of 

RGCs in vitro, but does not have a direct effect on the increased number of RGCs in the 

presence of agonist and PAM.  
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Finally, an inhibitor for Bcl-2 was used to analyze its role in cell survival. Bcl-2 is an anti-

apoptotic protein that is up-regulated by PI3 kinase and down-regulated by p38 MAP kinase. It 

is hypothesized to be the final target of the ACh neuroprotective pathway as well as the p38 

MAP kinase death pathway. In its absence one would expect a total loss of neuroprotection and 

RGC survival with agonist + PAM to be equal to that of control. Interestingly, RGC survival in 

absence of Bcl-2 was increased with agonist + PAM as compared to control. The amplitude of 

this increase was less than that in the presence of Bcl-2 from previous experiments. This result 

would need to be strengthened for statistical significance with a greater experimental value 

than achieved in this study (n=4). However, the data trend in this study suggests that while 

some of the increase in RGC survival is mediated through the PI3 kinase        Akt            Bcl-2 

pathway, another pathway may be contributing to cell survival.  That is, if the Bcl-2 pathway 

was really the essential end target then blocking it should drop the increase in survival to zero, 

as seen in PI3 kinase inhibition. The persistent increased survival is suggestive of an additional 

mechanism for survival. This additional pathway must be activated downstream of PI3 kinase as 

its absence resulted in total blockade of neuroprotection, and upstream of Bcl-2 as its absence 

resulted in cell survival at a lesser incidence. 

Each of the aforementioned enzyme inhibitor experiments utilized a known inhibitory 

compound for targeted enzymes in the hypothesized signaling cascade of PNU-282987 and 

PNU-120596. Each of the inhibitory reagents utilized in this study are widely produced and used 

with proven efficacy for their target function. The inhibitor reagents were applied at a 

consistent concentration of 10 nM thirty minutes prior to drug application on experimental 

plates B, C & D. Cell survival on these plates was then compared to control plate A which 
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contained no inhibitor or pharmacotherapy. It is warranted to repeat these methods with an 

additional variable of inhibitor alone.  Inhibitor in the absence of pharmacotherapy is a justified 

variable because it would allow for observation of cell survival in the absence of enzymes of 

interest but without the influence of pharmacotherapy. This would help to further clarify the 

role of PNU-282987 and PNU-120596 in the activation of Bcl-2 as a final target protein. It would 

also further clarify what, if any, role p38 MAP kinase plays in activation of apoptotic RGC death 

to determine if this pathway has a direct or indirect role in the neuroprotection provided by the 

α7 nAChR agonist and PAM. Continuation of this enzyme inhibitor experimentation will be 

conducted in this laboratory in the near future to augment the data obtained in this study. 

Implications 

The results of this study suggest that a PAM can be used in combination with an α7 

nAChR agonist, PNU-282987, to enhance its effect as a neuroprotective agent. The PAM has no 

neuroprotective effect on its own, but rather works allosterically to enhance the effect of the 

agonist. This neuroprotective effect was assessed on an in vitro model of porcine RGCs that 

were subject to axotomy.  The absence of a specific cellular injury model suggests that the 

protection provided by these agents may be applicable in a number of different models, as well 

as an in vivo model of nonspecific neurodegeneration. It has been proposed that increased IOP 

presses against RGC axons as they make a 90° turn at the optic nerve head to exit the eye, 

damaging RGCs and contributing to neurodegeneration. This is referred to as the “Achilles heel” 

of the anatomy of the retina (Dreyer et al., 1996). If this natural mechanism of injury leads to 
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RGC injury in absence of a specific insult, pharmacotherapy with an α7 nAChR agonist and PAM 

would be effective form of neuroprotection. 

 The role of glutamate excitotoxicity remains yet controversial, and further experiments 

with measured levels of glutamate would be needed to determine if glutamate plays a role in 

this nonspecific model of injury. Enzyme inhibitor experiments propose that the combination of 

agonist and PAM work via the PI3 kinase      Akt         Bcl-2 pathway to up-regulate Bcl-2, 

which has known anti-apoptotic properties. This cell survival pathway via PI3 kinase has been 

linked to calcium influx through activated α7 nAChRs (Brandt et al. 2010). Results of this study 

also suggest that an additional pathway may be contributing to enhanced cell survival, and this 

pathway occurs somewhere between PI3 kinase and Bcl-2. Further research is needed to 

identify this additional pathway. Once identified, inhibition of this pathway in combination with 

inhibition of Bcl-2 should produce a complete loss of neuroprotection under these culture 

conditions to confirm its validity. 

Limitations and Potential Applications 

This study was limited to findings of an in vitro culture model of glaucoma utilizing 

isolated porcine RGCs. The question remains, does a combination of PNU-282987 and PAM 

provide neuroprotection for RGCs in an in vivo model of glaucoma? Would the PAM continue to 

work allosterically to enhance the effect mediated by nAChRs under physiologic conditions in 

vivo? Previous studies in this laboratory have demonstrated that PNU-282987 inhibits the loss 

of RGCs in glaucoma-like conditions in a dose-dependent manner in both in vitro and in vivo 

studies through activation of α7 nAChRs (Linn et al. 2011, Iwamoto et al. 2013). Acetylcholine 
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and nicotine provide neuroprotection through this same mechanism within the retina 

(Wehrwein et al. 2004, Thompson et al. 2006, Asomugha et al. 2010). In this study the PAM was 

tested only with the specific agonist PNU-282987, but it is possible that it would also enhance 

the effect of naturally-occurring ACh. In the retina, ACh is released from starburst amacrine 

cells, which synapse onto RGCs (Masland, 1988). The effect of a PAM in combination with 

naturally-occurring ACh was not able to be evaluated in this study because RGCs were isolated 

and cultured in the absence of starburst amacrine cells. If the PAM used in this study could 

allosterically enhance the effect of ACh as it does for PNU-282987, it could potentially be used 

to substantiate the body’s natural protective response against RGC stress. If not in combination 

with ACh, the potential still remains for PNU-282987 and PAM to be used as a 

pharmacotherapeutic strategy for patients with neurodegenerative diseases of the retina, such 

as glaucoma.  

There is also a potential for application of these agents for neuroprotection against 

neurodegenerative diseases elsewhere in the nervous system, such as Alzheimer’s disease. 

Alzheimer’s disease is characterized by neurodegeneration resulting from apoptosis of neurons 

and formation of neurotoxic amyloid plaques in the brain (Nikura et al., 2006). Previous 

epidemiologic studies identified a decreased incidence of Alzheimer’s disease in nicotine users, 

and thus a neuroprotective effect of nicotine with regards to formation of amyloid plaques 

(Fratiglioni and Wang, 2000). Nicotine affords this effect through a mechanism mediated by α7 

nAChRs, demonstrated by Hellstrom-Lindahl et al. (2004) through inhibition studies with an α7 

nAChR antagonist, Mecamylamine, to block nicotine’s effect in transgenic mice containing 

Alzheimer’s disease. In the absence of the α7 nAChR, nicotine did not have a neuroprotective 
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effect. Therefore, the α7 nAChR is involved in neuroprotection of diseases in the retina and 

elsewhere in the nervous system, providing opportunity for future application of an α7 nAChR 

agonist and α7 specific PAM in other neurodegenerative disease states. 

Conclusion 

The findings of this study are suggestive of future application of an α7 nAChR agonist in 

combination with a PAM for protection of RGCs in the setting of glaucoma, and possibly in 

other neurodegenerative diseases as well. Previous studies have demonstrated success with 

PNU-282987 as a neuroprotective strategy for RGCs in an in vivo rat model of glaucoma 

(Iwamoto et al. 2014).  This study’s in vitro finding suggests that a PAM could enhance the 

neuroprotection provided by PNU-282987. An in vivo approach to the repetition of this study 

would further elucidate the role of a PAM in the protection of RGCs both in combination with a 

specific α7 nAChR agonist and in combination with naturally-occurring ACh in a physiologic 

setting. This study has implicated the PI3 kinase     Bcl-2 pathway in the action of α7 nAChR 

neuroprotection, and also suggested the utilization of an additional unidentified pathway 

downstream from PI3 kinase. Further insight into any additional pathway utilized by these 

agents is also warranted in future research. Use of these agents could ultimately lead to 

therapeutic prevention of glaucoma and potentially other neurodegenerative diseases.  

As members of the healthcare team it is important to not only provide the highest level 

of care, but also to continue research to advance the highest level of care. Glaucoma, a chronic 

and debilitating disease that is responsible for current visual impairment in over 6 million 

people worldwide, remains without a cure.  To date, all treatment strategies for glaucoma are 
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designed to decrease IOP within the anterior chamber of the eye (The Ophthalmic News & 

Education Network, 2010). Elevated IOP remains the only risk factor currently recognized by the 

FDA despite the fact that not all cases of glaucoma present with IOP, and studies have shown 

lowering IOP does not ensure prevention of RGC death (Sena et al., 2010). Previous studies in 

this lab have shown that treatment with the α7 nAChR agonist, PNU-282987, in eye drop form 

after the onset of glaucomatous conditions inhibits the loss of RGCs in vivo (Iwamoto et al., 

2014). Results from this study demonstrate an enhanced level of PNU-282987 neuroprotection 

with the addition of a PAM, and possible application of a PAM to enhance the physiologic 

response to neurodegenerative insult. Clinically, these results prompt further research into a 

novel therapeutic approach to glaucoma that is not targeted at altering IOP. It also warrants 

further research into the clinical effectiveness of a PAM on the physiologic neuroprotective 

response of ACh and the α7 nAChR. The results from this study prompt further research that 

could dramatically change the treatment approach for patients with glaucoma by targeting the 

disease at the level of the retina where irreversible damage and vision loss ultimately occurs.  
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