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Abstract

The body’s postural control mechanism is responsible for responding to perturbations of
balance and keeping the body upright. One of the main ways that this is completed during quiet
standing, where both feet are planted on the ground, is through center of pressure oscillations. In
these oscillations, the center of pressure circles around the center of mass, constantly
counteracting any lean that exists in the body. These oscillations can be recorded with floor-
embedded force plates and center of mass can be recorded with a motion capture system. In this
research, these signals were recorded for stances with feet together and feet tandem with eyes
opened and eyes closed with neurotypical subjects. Center of pressure and center of mass were
compared to determine if they provide the same information as one another. Through different
correlation measures, it was shown that they generally have a very strong relationship to one
another, and that COP provides as much information as COM.

From there, center of pressure was further analyzed using approximate entropy, velocity
measures, and regression. This analysis showed evidence of increased irregularity, increased
velocity, and increased frequency content in center of pressure oscillations during standing
conditions with lower stability. ApEn indicated significant differences between the most stable
eyes open, feet together condition and all of the less stable feet tandem trials for eyes open and
eyes closed in nearly every subject. Velocity, however, only indicated significant differences
between the most stable condition and the least stable eyes closed, feet tandem trials. Regression
analysis showed a decrease in the content that could be explained by the model as stability
decreased. Regression also provided a general illustration of what each stability condition may
be expected to look like, which can be used to compare future data against. The results of this

study will be useful to compare non-neurotypical subject data to moving forward.
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Chapter 1. Introduction

1.1. Introduction

The physiological processes involved with keeping a human upright are complex and dynamic.
In mechanics, balance is a term used to describe a state where the sum of all forces acting on an
object are zero [1]. In terms of human physiology, those forces are the elements of body posture
that keep a person from falling [2]. Postural control relates to this concept in that it is the act of

maintaining balance during all activities [1].

Standing humans have a few different metrics that allow for balance and postural control
to be analyzed quantitatively. The two most commonly used are center of pressure (COP) and
center of mass (COM). These are often used interchangeably. However, clinically the two
metrics are distinct. The COP is the point location of the resultant ground reaction force
occurring where the body makes contact with the ground. It is located in the position of the
weighted average of all of the pressures that are being exerted on the body by the ground, where
the sum of the moments of each individual pressure is equal to the moment of the resultant
ground reaction force vector acting at the COP [2]. When a person has both feet planted on the
ground, each foot has a separate COP, which can be combined to create one resultant COP for
the entire body. The COM is the point location on the body that is representative of all of its
mass, where the moment of the COM is equivalent to the sum of the moments of the weight
acting at every point on the body [2]. This metric is in a relatively constant location in the center
of the body, about one-half to two-thirds of the way up between the feet and the highest point of

the body [2]
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Another metric that is important to consider is the base of support (BOS). This is an area
underneath the body defined by the perimeter around all points of contact with the ground. It
defines the limits of motion for which a person can be stable without stepping [3]. Therefore, the
BOS boundaries are considered boundaries of stability as well since the COP can only move
within them in an attempt to keep the COM within the same limits [4]. Movement of the COP
outside the BOS results in the COM following beyond the limits of the BOS, leading to a loss of

postural control and, thereby, balance.

Many studies have analyzed the methods of postural control in humans during quiet
standing for the purpose of understanding the way that the body maintains balance [2], [4]-[21].
These studies have provided much insight into the way that the human body stays upright. One
main takeaway is the general oscillatory pattern that the COP and COM can be expected to
follow under typical neurologic function, where the COP oscillates about the COM to counteract

a potential fall that could otherwise be caused by the COM moving too far in any direction.

In addition to COP oscillations, the postural control mechanism utilizes ankle and hip
strategies while maintaining balance [22]. The ankle strategy compensates for a perturbation of
balance by adjusting the angle that the ankle creates between the foot and the leg as opposed to
compensating by moving the upper body. This is often thought of as a single inverted pendulum
model [2], [23], [24]. When the body utilizes the hip strategy, the angle of the hips relative to the
upper and lower body is adjusted in a similar way to how the ankle strategy works. It is useful
for strong perturbations [13]. This is often thought of as a double inverted pendulum model [2],

[23], [24].
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Correlation, approximate entropy, velocity magnitude, velocity power spectrum density,
and regression are all useful tools for understanding more about the functioning of the postural
control system. Correlation provides information about the similarity of signals, approximate
entropy provides information about the regularity of a signal, velocity indicates the rate of
change of a signal, power spectral density indicates the frequencies at which a signal occurs, and
regression gives a model to predict the relationship between a signal and time. This study utilized
these analyses to determine patterns and indices present in postural control for neurotypical
subjects in quiet standing positions for eventual comparison with the same data from concussed

subjects.

1.2. Purpose

The aim of this study was to examine the relationship between center of pressure (COP)
and center of mass (COM). These signals were chosen as they represent functionality of the
complex postural control mechanism used to maintain balance. The goal was to determine
patterns and indices present in correlation, approximate entropy, velocity, and power spectrum
metrics as well as to determine an estimated baseline signal for different stability conditions.

This information could be useful in tracking neurological deficits, such as concussion in athletes.

1.3.  Scope

This study analyzed patterns and indices present in COP and COM signals during quiet
standing of healthy, adult subjects. The two signals were analyzed using the bivariate technique
of cross-correlation to determine the relationship between the two signals to gain an

understanding of if and how the relationship between the two signals changes with various
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stability conditions. Six different stability conditions were considered: feet together (FT), feet
tandem with the dominant foot back (TanDB), and feet tandem with dominant foot forward
(TanDF), for both eyes open (EO) and eyes closed (EC).

Additionally, the two signals were analyzed using univariate techniques to determine if a
single signal can provide useful information. These techniques include autocorrelation,
approximate entropy, velocity, power spectral density, and regression. The autocorrelation signal
was compared to other correlation signals to determine relationships between signals. For
approximate entropy, velocity, and power spectral density, a single value was calculated that
could be compared between balance conditions. Regression analysis provided a baseline signal
that could approximate what different stability conditions looked like, as well as an R squared
value that could be compared between those stability conditions. One-way ANOVA testing was
completed to compare the values of these analyses between the baseline conditions (EOFT) with
the other conditions to determine the statistical significance of the findings.

It was also considered whether or not changes in the COP and COM signals are linked to
specific frequency bands which are associated with neuronal activity. The frequency bands
considered were the delta (0.5 — 4 Hz), theta (4 — 8 Hz), alpha (8 — 13 Hz), beta (13 — 30 Hz) and

gamma (30 — 100 Hz) bands.

1.4. Assumptions

The assumption that very similar postural control mechanisms exist in all humans, but
each individual has postural control that is unique from all others as it can be improved
throughout one’s life with different experiences was used throughout this study [25]. Therefore,

the postural control in different people would function similarly at the base level but may be
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more finely tuned in some than others. Because of this assumption, each subject was analyzed
against themselves between different stability conditions so as to negate any bias due to
differences in the postural control mechanism from one subject to another. It was also assumed
that the EOFT condition would be the most stable among the six conditions tested. Accordingly,
this was what the rest of the conditions were compared against for determining results. Finally, it
was assumed that a resultant COP, as opposed to considering the individual COPs of each foot,

would provide the information needed for this analysis.

1.5. Hypothesis

Studies have shown that the COP oscillates about the COM in order to maintain balance.
Based upon this understanding, it was hypothesized that COP would show a delay in recovery
from finding itself beyond the COM, in any direction, in trials performed under a less stable
condition when compared to trials performed under a more stable condition. It was also
hypothesized that both COP and COM would display a higher approximate entropy in less stable
conditions due to postural control behavior being more erratic while attempting to keep up with
increased perturbations to balance. Along with approximate entropy being higher, it was
hypothesized that the R-squared value of regression would be lower in low stability conditions as
a model would be able to accurately approximate less of the information in the signals.
Furthermore, it was hypothesized that velocity of the signals would increase as stability
decreased, considering lower stability requires more adjustments from the postural control

mechanism in the same amount of time.
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1.6.  Significance

Determining the relationship between COP and COM signals provides crucial information
about the necessary monitoring that needs to be completed in order to adequately assess postural
control functionality. As it becomes known what information is most indicative of the
functionality of the human postural control mechanism, the additional information gained from
univariate analysis on those signals should provide insight into patterns and indices that are
characteristic of a healthy brain and how it works to maintain balance. Understanding how a
healthy brain works to keep a person upright during different stability conditions is invaluable
for future research with subjects that have suffered from a traumatic brain injury such as a
concussion. Understanding how a healthy brain reacts to different stability conditions and the
way that the body moves in response to that reaction will allow for comparison to the way an
unhealthy brain reacts to the same conditions and eventual conclusive testing for concussion

diagnosis.

1.7. Definitions

Quiet Standing: standing position where a person has both feet on the ground

Center of Pressure: location of the resultant pressure under a person’s points of contact with the
ground

Center of Mass: point location representing the weighted average of the body’s entire mass

Approximate Entropy: measure of the amount of uncertainty in a signal

Power Spectral Density: measure of the spectral content of a signal

Regression: approximates a function for a set of data

Pearson’s Correlation Coefficient: measures the linear relationship between two variables
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ANOVA: determines if the difference between signals is statistically significant
Dunnett’s Post-Hoc Test: compares all signals to one baseline signal and determines which are

significantly different
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Chapter 2. Manuscript

Abstract

The body’s postural control mechanism is responsible for responding to perturbations of
balance and keeping the body upright. One of the main ways that this is completed during quiet
standing, where both feet are planted on the ground, is through center of pressure oscillations. In
these oscillations, the center of pressure circles around the center of mass, constantly
counteracting any lean that exists in the body. These oscillations can be recorded with floor-
embedded force plates and center of mass can be recorded with a motion capture system. In this
research, these signals were recorded for stances with feet together and feet tandem with eyes
opened and eyes closed with neurotypical subjects. Center of pressure and center of mass were
compared to determine if they provide the same information as one another. Through different
correlation measures, it was shown that they generally have a very strong relationship to one
another, and that COP provides as much information as COM.

From there, center of pressure was further analyzed using approximate entropy, velocity
measures, and regression. This analysis showed evidence of increased irregularity, increased
velocity, and increased frequency content in center of pressure oscillations during standing
conditions with lower stability. ApEn indicated significant differences between the most stable
eyes open, feet together condition and all of the less stable feet tandem trials for eyes open and
eyes closed in nearly every subject. Velocity, however, only indicated significant differences
between the most stable condition and the least stable eyes closed, feet tandem trials. Regression
analysis showed a decrease in the content that could be explained by the model as stability

decreased. Regression also provided a general illustration of what each stability condition may
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be expected to look like, which can be used to compare future data against. The results of this

study will be useful to compare non-neurotypical subject data to moving forward.

2.1. Introduction

The physiological processes involved with keeping a human upright are complex and
dynamic. In mechanics, balance is a term used to describe a state where the sum of all forces
acting on an object are zero [1]. Postural control is the act of maintaining balance during all
activities [1]. Anticipatory and reactive processes help maintain postural control and keep a
person from falling during both expected and unexpected perturbations of their balance [1]. In
these processes, sensory neurons work with the central nervous system (CNS) to trigger motor
neurons which contract muscles in the lower body to counteract extrinsic and intrinsic forces that
impede balance [5]. The information monitored by sensory neurons to make the necessary
changes includes tracking the center of mass (COM) and center of pressure (COP) of the body,

in relation to its base of support (BOS) [25].

Standing humans have a few different metrics that allow for balance and postural control
to be analyzed quantitatively. The two most commonly used are COP and COM. These are often
used interchangeably. However, clinically the two metrics are distinct. The COP is the point
location of the resultant ground reaction force where the body makes contact with the ground. It
is located in the position of the weighted average of all of the pressures that are being exerted on
the body by the ground, where the sum of the moments of each individual pressure is equal to the
moment of the resultant ground reaction force vector acting at the COP [2]. When a person has
both feet planted on the ground, each foot has a separate COP, which can be combined to create

one resultant COP for the entire body. The COM is the point location on the body that is
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representative of all of its mass, where the moment of the COM is equivalent to the sum of the
moments of the weight acting at every point on the body [2]. This metric is in a relatively
constant location in the center of the body, about one-half to two-thirds of the way up between

the feet and the highest point of the body [2].

Another metric that is important to consider is the BOS. This is an area underneath the
body defined by the perimeter around all points of contact with the ground. It defines the limits
of motion for which a person can be stable without stepping [3]. Therefore, the BOS boundaries
are considered boundaries of stability as well since the COP can only move within them in an
attempt to keep the COM within the same limits [4]. Movement of the COP outside the BOS
results in the COM following beyond the limits of the BOS, leading to a loss of postural control

and, thereby, balance. An illustration of the three described metrics is seen in Figure 2.1.

~ Center of pressure

CoM

Base of support

Center of mass

Figure 2.1. Center of pressure, center of mass, and base of support locations, adapted from [26]
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Many studies have analyzed the methods of postural control in humans during quiet
standing for the purpose of understanding the way that the body maintains balance [2], [4]-[21].
These studies have provided much insight into the way that the human body stays upright. One
main takeaway is the general oscillatory pattern that the COP and COM can be expected to
follow under typical neurologic function. For example, if the COP moves behind the COM, a
person would fall backward without intervention. As the COP moves farther from the COM,
angular acceleration and velocity increase, causing the body to fall more quickly. In order to stop
this motion and an eventual fall, the body pivots about the ankle, causing an anterior angular
velocity and acceleration of the body and moving the COP in the anterior direction due to the
moment resulting from the weight acting downward at the COM and the ground reaction force
acting upward at the COP. While the body sways forward, the COP and COM line up and the
person is no longer at risk of falling backward. At this point, the angular acceleration shifts and
begins acting in the posterior direction, due to a change in direction of the moment, while the
velocity continues moving anteriorly. When the COP has moved in front of the COM, the body
must pivot about the ankle to avoid a forward fall and the angular velocity shifts directions,
leading to posterior rotation and causing the body to sway backward. This postural control
pattern of the COP oscillating around the COM continues while a person maintains quiet

standing and is depicted in Figure 2.2.
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LS

5

Figure 2.2. Center of pressure oscillations at five points in time where the COP location
is represented by R, the COM location is represented by W, angular velocity is represented by ,

and angular acceleration is represented by o [2].

While many researchers have studied the methods of postural control, no studies were
found that utilized both COP and COM signals to characterize postural control in neurotypical
subjects during changes in stability conditions of quiet standing. There have been a number of
studies that analyzed the postural control mechanism in subjects suffering from a concussion
while completing trials that involved walking coupled with a cognitive test such as answering
questions [6], [9], [27], [28]. While the information gained from these studies is important, it
would be difficult to apply outside of a lab environment set up with multiple permanent force
plates to ensure uniform data recording while the subject moves as variables are more difficult to
control with a moving subject. In quiet standing, changing stability conditions can result from a
different standing position or be due to neurological changes that affect the functionality of the

body’s postural control. In this case, manual changes in standing position were implemented
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with neurotypical subjects in order to develop indices that could be useful in tracking

neurological deficiencies, such as concussion in athletes.

There are many analyses that can aid in learning more about the patterns of the dynamic
COP and COM signals. As the COP and COM of a person with typical neurological functionality
can be expected to follow a relatively regular pattern, approximate entropy - a measure that
quantifies the regularity of a signal [29], can be useful in identifying changes due to loss of
stability. A high stability scenario will be expected to show quite regular movement of those
entities, so entropy should be quite low. However, if the scenario is less stable or a person has
neurologic functionality that has been negatively affected, irregularity and, therefore, entropy,

should increase.

The velocity of these metrics can give information about how quickly a person sways
back and forth in attempt to maintain balance. The first derivative of the COP and COM signals
provides this knowledge. Comparing the changing velocity between trials of different stability
conditions may help identify useful indices for quantifying loss of postural control, independent
of the cause — i.e. due to postural changes or neurological changes. In addition to comparing the
magnitude of velocity between conditions, the power spectral density (PSD) is another method
that may help identify changing postural control by providing information about the frequency
content in a signal. Identifying objective metrics from the COP and COM signals could lead to

better outcomes when screening for concussive damage.

While every person will have COP and COM responses to quiet standing conditions that
look different from those of another, it is possible to develop a neurotypical baseline of these

signals using regression. This method considers the relationship between, in this case, the COP
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or COM signals and the time over which the signals were recorded [30]. Therefore, it can allow

for clear indication of what a certain condition should look like within a certain amount of error.

The purpose of this study was to examine the patterns and indices present in COP and
COM signals as well as the relationship between COP and COM signals during quiet standing
conditions for healthy adults. Identifying the way that these signals interact at various levels of
stability in a neurotypical subject would allow for baseline patterns and behavior to be
determined. As these patterns and behavior are understood, the knowledge of how COP and
COM look for a healthy individual can be compared to those signals for an individual under
suspicion of abnormal neurological functioning, such as a concussion, to provide insight into

how the person is responding to postural control requirements.

2.2. Methods

2.2.1. Participants

This study included data from healthy adults of varying levels of physical activity with no
history of neurological or muscular disorders or injuries. Two males and four females, between
the ages of 18-34, voluntarily provided their signed informed consent prior to participation in
this study. Before collection of data commenced, foot dominance for each subject was
determined based upon the leg with which they preferred to kick a ball. If a subject was unable to
provide a preference for that, they were asked to stand on one leg to determine which they were
most steady on. This data collection was approved by the Institutional Review Board at Grand
Valley State University (18-246-H) for previous research. The approval was extended to allow

for further analysis of the data in this study.
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2.2.2. Procedure

Five, 30-second trials of six difference balance conditions were completed with each
subject as shown in Table 2.1. To obtain a stable baseline condition to compare data for other
balance conditions to, the eyes open, feet together (EOFT) condition was considered to be the
most stable configuration and completed first. The subject then progressed through increasingly
unstable balance conditions. Between each trial, a 30-second break was allowed, with a longer 2-
minute break between each balance condition. Conditions were completed in the same order
listed in the table for all subjects.

Table 2.1. Quiet standing balance conditions
Order Balance Condition Description

1 EOFT Eyes open, feet together (most stable, baseline)
2 ECFT Eyes closed, feet together

3 EOTanDB Eyes open, feet tandem, dominant foot in back
4 ECTanDB Eyes closed, feet tandem, dominant foot in back
5 EOTanDF Eyes open, feet tandem, dominant foot in front
6 ECTanDF Eyes closed, feet tandem, dominant foot in front

The self-reported foot dominance was used for each subject to satisfy the description of
relevant conditions. Balance tasks were performed barefoot with the arms positioned with the
index finger pointed towards the shoulder on the same side of the body and the elbows pulled in.
An image of one of the subjects performing feet together and feet tandem tasks are shown below

in Figure 2.3 as generated by the Nexus software.
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Figure 2.3. Subject stance for feet together (left) and feet tandem (right) trials

For feet together conditions, both feet were placed on one force plate while feet tandem
conditions utilized two force plates, with each foot fully on an individual force plate. The subject
was asked to hold the quiet standing position for the full thirty seconds without moving their

body or stepping out of position.

2.2.3. Data Acquisition

2.2.3.1.  Motion Capture and Force Plates

To track the movement trajectories of a modified Full-Body Plug-in-Gait (FB PiG)
model, 16 Vicon MX cameras (Oxford Metrics, Oxford, UK) were used. Data were collected at a
sampling frequency of 120 Hz during quiet standing balance tasks. Recording of this data
resulted in three separate COM signals for each trial, including the x, y, and z axes for the
location of the COM. Of those signals, the x and y axis data were used for analysis, which

represents the anterior/posterior (AP) and medial/lateral (ML) directions for the subject,
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respectively. Vicon Nexus motion capture software v2.8 (Oxford Metrics, Oxford, UK)
calculated the COM from the output of the motion capture cameras using Dempster’s
anthropometric data to compute segmental centers of mass and inertial properties to compute
joint kinetics as described in [31]. The modified FB PiG model included additional fifth
metatarsal (5"Met) and medial knee markers. The set of markers were placed on the subject as

shown in Figure 2.4.
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Figure 2.4. Modified Full-Body Plug-in-Gait model [32]

For collection of ground reaction forces during quiet standing balance tasks, two floor-
embedded AMTI (Advanced Mechanical Technology Inc., Watertown, MA) force plates were
used. These collected data at a sampling frequency of 1200 Hz. They were oriented one directly
in front of the other. For feet together tasks, both feet were placed on one force plate. The second
force plate was implemented to measure separate ground reaction forces when the feet were
positioned in a tandem stance [32]. Similar to the COM data, this data collection resulted in three

separate COP signals for each force plate used, for each trial. These include the x, y, and z axis
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points for the location of the COP. Of those signals, the x and y axis data were used for analysis,
as they represent the AP and ML directions for the subject, respectively. COP and COM signals
were synchronized using Vicon Nexus motion capture software v2.8 (Oxford Metrics, Oxford,

UK). The orientation of the feet on the force plates is illustrated in Figure 2.5.
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Figure 2.5. Feet orientation adapted from [32]

2.2.3.2.  Coordinate Systems

The coordinate systems that the COP and COM signals were recorded in are two separate
systems. The COP signal was recorded in the force plate coordinate system, where the origin was
located in force plate two, which was not used in recording. In this system, the x-axis ran in the
AP direction with respect to the subject where positive x was anterior. The y-axis ran in the ML
direction where positive y was to the right of the subject. The COM signal, on the other hand,
was recorded in the laboratory coordinate system, where the origin was located in a corner of the
room, as opposed to being associated with the force plates. In this system, the x-axis also ran in

the AP direction with respect to the subject, however, positive x was posterior for this system.
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The y-axis was the same as the force plate coordinate system where it ran in the ML direction

and positive y was to the right of the subject. These coordinate systems are illustrated in Figure
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Figure 2.6. Orientation of coordinate systems
While the coordinate systems that the two signals were recorded in were different, the
Vicon Nexus motion capture software v2.8 (Oxford Metrics, Oxford, UK) converted the COP
data into the laboratory coordinate system. Therefore, data that was analyzed had x and y-axis
data that were in the same direction as one another in relation to the subject. This final form had

a positive x-axis in the posterior direction and a positive y-axis to the right of the subject.

2.2.4. Data Analysis

The COP and COM data were analyzed using both bivariate and univariate measures in

the time and frequency domains using Python 3.7.6 (Python Software Foundation,

https://www.python.org/). As all people have a slightly different postural control system, each

subject was analyzed separately so as to not have data skewed by differences in magnitude or
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behavior of data from one subject to the next. The process for this analysis is illustrated in Figure
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Figure 2.7. Signal processing function block diagram

2.2.4.1.  Signal Preprocessing

A Fast Fourier Transform was applied to the COP signal of the baseline condition for all
subjects to allow for analysis of the frequency content of the raw data. Upon completion of this,
a fourth-order, zero-lag, low-pass Butterworth filter was applied with a cutoff frequency of 6 Hz
via Nexus motion capture software v2.8 (Oxford Metrics, Oxford, UK) to eliminate any noise
present in the signal that could not be attributed to each subject’s postural control mechanism.
This cutoff frequency was chosen because numerous studies on the frequency content of postural
sway have shown that its signal content exists at or below 5 Hz [33]—[35]. This value was

corroborated by the frequency analysis performed on the current study’s data.
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The movement trajectories collected via motion capture cameras were filtered by the
Nexus motion capture software v2.8 (Oxford Metrics, Oxford, UK) using a Woltring filter with a
15 Hz cutoff [36]. This is the recommended course of action for movement trajectory collection

in the Nexus software. The movement trajectories are what were used to calculate the COM.

In addition to the application of these filters, the two separate COP signals for tandem
balance conditions had to be combined into one resultant COP so that it could be directly
compared to the feet together conditions. As stated previously, feet together trials were
completed using only one force plate while feet tandem trials were completed using two force
plates, where each plate collected data for one foot, respectively. Therefore, the feet together data
resulted in only one COP signal, while the feet tandem data resulted in two COP signals. In order
to compare the two condition types, the two COP signals for the feet tandem trials were

combined into one resultant COP for the entire body as follows [2], [37], [38]:

COP,p; = COP, —2— + COP, —2& 2.1)

R
FzL+FzR FzL+FzR

Where COP;, and CO Py are the values of the COP signal from the left and right foot,
respectively, and F,; and F,5 are the vertical forces exerted on the force plates under the left and

right foot, respectively.

2.2.4.2.  Approximate Entropy

Approximate entropy (ApEn) quantifies the regularity of a time-series signal [29]. It is
well suited for small data sets, which nicely frames the measure to be used on small windows of
a larger dataset to obtain a moving representation of the regularity of a signal. ApEn is defined as

follows [29]:
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—ApEn = ©@™*1(r) — ®™(1) (2.2)

Where m and r are fixed values, m being the length of compared runs and r is a filter

value, and @™ (r) is defined as:
O™ (r) = (N —m + 1)L XV n [C(r)] (23)
Where N is the total number of data points and C/™(r) is defined as:

m number of j <(N—m+1)such that d[x(i),x(j)]<r
C'(r) =
N-m+1

(2.4)

Where d[x(i), x(j)] is the maximum distance between the respective scalar components

of vectors x(i) and x(j).

As the meaning behind Equation 2.4 for calculating C/™(r) can be difficult to discern,
Figure 2.8 has been provided to explain how the numerator is determined if the value of m is set
to two, which is what was used in this research. Here, each pair of neighboring data points
creates a line segment, X(i) = [x(i) x(i+1)]. Two darks regions are seen in the figure, which
represent the tolerance regions for the calculation. The tolerance bands are separated by a
distance of r, to satisfy the requirement in the equation that a line segment have a distance less
than or equal to r. The numerator of the equation is equal to the number of line segments for
which the first point falls within tolerance region one and the second point falls within tolerance
region two [39]. In the case shown below, there are four line segments which satisty the

requirement: X(8), X(15), X(19), and X(24). They are shown in bold.
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Figure 2.8. Graphical interpretation of C["(r) in ApEn, adapted from [39]

A signal will have an ApEn value of zero if it is entirely predictable. This value increases
as the uncertainty in the signal increases. This provides insight into the regularity of the COP
oscillations for a subject to determine whether the postural control mechanism is functioning as
expected or not. Figure 2.9 shows how the ApEn value of a periodic signal is much lower than

that of white noise.
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Figure 2.9. Difference in approximate entropy values between a periodic signal and white noise,
adapted from [39]

Moving approximate entropy was calculated for all COP trials using windows of size
1800, or 1.5 second intervals, with a 50 percent overlap to create 39 segments. This allowed for
visual understanding of how the approximate entropy changed over time, however, these 39
values were averaged to obtain a single approximate entropy value for further calculations. This
was done as numerous studies have shown postural sway to be a stationary signal in durations

greater than 15 seconds [19], [40], [41].
2.24.3.  Velocity

The first-derivative velocity provides information about how quickly the position of the

COP and COM moves during postural control. This is estimated using the following equation:

N x(+1)-x()
V= t(i+1)—t(i) (2.5)
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Where x is the COP or COM signal, t is the time vector, and 1 is the index equal to the
length of the signal. This slope equation gives the rate of change of the signal, providing

knowledge about how quickly the body is swaying while maintaining balance.

Velocity was calculated for all COP signals between every two points. This created a new
signal with a length equal to the original COP signal. The magnitudes of the data in the new
velocity signal were averaged together to create a single value representing the average velocity

for each trial, respectively.
2.2.4.4.  Power Spectral Density

The power spectral density (PSD) of a signal indicates how much content of that signal
exists at each frequency. High velocity signals contain more content at higher frequencies than

signals that change with low velocity. This measure is defined as follows:
Sex (@) = f_oooo Rxx(T)e_ij dt (2.6)
Where R, () is the autocorrelation and is defined as follows:

R,.(7) = Tl [0 () * x(t + 7)dt 2.7)

Where the signal in question is a finite length, real valued signal, x(t), from 0 <t < T, and

where 1 is some amount of lag.

Auto-power, or the PSD of an individual signal, was determined for the velocity signal of
all COP data. This was not calculated for the raw COP signal, as numerous studies suggest that

content for that signal exists only at frequencies that are 5 Hz and less [33]—-[35]. Therefore,
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further analysis was unnecessary as the data would have no connection to neural activity and the

behavior of content that does exist has been well documented.

In order calculate the PSD for the velocity signals, Pythons NumPy tool correlate was
used to calculate the autocorrelation of the signal. This was followed by the NumPy tool fft.fft to
complete the necessary Fourier transform to obtain the PSD. A summation of all frequency
content in a signal was performed to obtain a metric of total power that could be compared

between trials.

In addition to the autocorrelation calculation that was completed as a part of the PSD
calculation, the cross-correlation between COP and COM signals of the same direction was also
performed using the NumPy correlate tool. This gave information about the similarity between

the two signals. Cross-correlation is defined as follows:
T
Ry (1) = Ti J,°x(®) * y(t + T)dt (2.8)

2.2.4.5.  Regression

Regression estimates the relationship between a signal and the time over which it was
recorded. This allows for a baseline idea of what a signal can be expected to look like. It is

defined as follows:
y = Bo+ Bix + Box? + P3x3 + -+ Bpx + € (2.9)

Where each B is a coefficient for the nth power of the independent variable, x, and € is

the error in the regression. This is often calculated in matrix form as shown below:
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V1 1 % xf . xM1Bo N
Y2 1 x, x2 .. x5 &1
Ys|=|1 x5 x% .. xP|[Bz|*]% (2.10)
Yn 1 x, x2 .. xPlBmd ten

This was calculated using the LinearRegression and PolynomialFeatures tools from the
scikit-learn machine learning library for Python. It was done to represent the relationship
between the time over which the data were recorded and an average of COP signals in the AP
and ML directions, from groupings of all trials from each respective stability condition. The
average COP signals were found by, first, converting all data to a delta value, where each data
point represented the deviation from the starting position of the signal. This allowed for all
signals to be on the same scale, starting at zero, as opposed to having a magnitude that changed
significantly based on subject. The mean value of the new signals of delta values was then taken.
This allowed for a visualization of what each condition can be expected to look like, in general,

and not be subject specific.

2.2.4.6.  Statistical Analysis

Each subject was considered independent from one another due to the assumption of
unique postural control mechanisms. Furthermore, trials and stability conditions were considered
independent of one another due to the breaks given between each of them. The subject’s ability
to rest and then reset allow for this assumption. This allowed for a one-way analysis of variance
(ANOVA) test to be completed for each subject in both the AP and ML directions. This was
done velocity magnitude, velocity PSD, and ApEn.

The ANOVA testing resulted in information about whether there were statistically

significant differences between different stability conditions for each of the listed analyses. If
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ANOVA determined that there were significant differences between conditions, a two-sided

Dunnett’s post-hoc test was completed to determine which conditions varied significantly from

one another. This test compared the baseline EOFT condition to every other, less stable,

condition.

2.3. Results

Examples of the COP data that were analyzed are illustrated in Figures 2.10 and 2.11,

which display raw data from subject 1 for the most stable EOFT condition and one of the least

stable conditions, ECFTanDF, respectively. Raw COP data examples from the remaining

stability conditions can be found in Appendix A.
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Figure 2.10. COP data for eyes open, feet together trial
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Figure 2.11. COP data for eyes open, feet tandem, dominant foot in front trial

While there are clear differences in the appearance of the COP in very stable conditions
versus very unstable conditions, as less-stable conditions have less-smooth signals, there is no
easy way to distinguish between each condition where the amount of stability differs only

slightly.

Examples of the COM data that were analyzed are shown in Figures 2.12 and 2.13, which
illustrate raw data from subject 1 during the EOFT condition and the ECFTanDF condition,

respectively. Raw COM data from the remaining stability conditions can be found in Appendix

A.
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Figure 2.12. COM data for eyes open, feet together trial
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Figure 2.13. COM data for eyes closed, feet tandem, dominant foot in front trial

The COM signals appear to have very similar shapes to their coordinating COP signal.
These signals are much smoother, however, and changes in signal appearance between stability
conditions are much less significant than with the COP signals. Once again, there is no easy way

to distinguish between conditions.
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2.3.1. COP and COM Relationship

The COP and COM signals look very similar when compared between the same trial for
each subject. An example of the two signals plotted together for a baseline EOFT trial for subject
1 is shown in Figure 2.14. Another example for an EOFTanDF trial is shown in Figure 2.15. As
the two signals were recorded with different instruments, their signals had different magnitudes.
Therefore, they were both standardized to have a mean of zero and a standard deviation of one

for comparison.

Standardgzed COP and COM data in AP durection for Standardized COP and COM data in ML directian for
baseline EOFT trial baselfine EOFT trial
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Figure 2.14. COP and COM signals for baseline eyes open, feet together condition in subject 1
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Figure 2.15. COP and COM signals for eyes closed, feet tandem, dominant foot in front
condition in subject 1

From the above figures, the COP and COM signals follow the same pattern, but the COP
signal displays higher frequency and magnitude of oscillations. While the signals appear very
similar, it was important to determine how similar they truly were so that it was clear whether
one signal could be used moving forward or if each signal provided information that the other
did not, indicating that both signals should be used for further analysis. To do this, the
autocorrelation of the COP signal was compared to the cross-correlation between the COP and
COM signals of the same trial. An example of what this plot looks like is shown in Figure 2.16

for an EOFT trial and 2.17 for an ECFTanDF trial.
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Figure 2.16. Autocorrelation and cross-correlation for baseline eyes open, feet together
trial in subject 1
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Figure 2.17. Autocorrelation and cross-correlation for eyes closed, feet tandem,
dominant foot in front trial in subject 1

By completing autocorrelation and cross-correlation analysis it has shown that both COP
and COM signals look very similar across all time lags. This further verifies the prediction that
was made upon looking at the raw data that the two signals may be providing the same
information. In order to determine exactly how similar the signals are and if it is reasonable to

assume that they will provide the same information and to eliminate one of them from further
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analysis, the Pearson’s correlation coefficient was calculated between COP and COM signals for
one trial from each stability condition for every subject. The results for the AP direction are seen
in Table 2.2 and the results for the ML direction are seen in Table 2.3.

Table 2.2. Pearson’s Correlation Coefficient for one trial from each stability condition in all
subjects in AP direction

Condition
EOFT | ECFT | EOFTanDB | ECFTanDB | EOFTanDF | ECFTanDF
Subject
1 0.974 0.981 0.838 0.923 0.869 0.866
2 0.951 0.922 0.863 0.792 0.819 0.845
3 0.958 0.788 0.755 0.665 0.648 0.787
4 0.929 0.923 0.527 0.892 0.705 0.919
5 0.966 0.939 0.944 0.877 0.921 0.828
6 0.942 0.870 0.863 0.948 0.698 0.866

Table 2.3. Pearson’s Correlation Coefficient for one trial from each stability condition in all
subjects in ML direction

Condition
EOFT | ECFT | EOFTanDB | ECFTanDB | EOFTanDF | ECFTanDF
Subject
1 0.908 0.866 0.930 0.843 0.863 0.828
2 0.944 0.834 0.754 0.850 0.857 0.870
3 0.909 0.881 0.925 0.838 0.750 0.852
4 0.886 0.896 0.818 0.820 0.863 0.843
5 0.976 0.937 0.900 0.901 0.901 0.903
6 0.955 0.887 0.868 0.848 0.824 0.825

It has been suggested that a Pearson correlation coefficient that is greater than 0.7
indicates a strong relationship between two variables and a value greater than 0.9 indicates a very
strong relationship [42]. Based upon those numbers, it is clear that the COP and COM signals

have a strong or very strong relationship in most cases.
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2.3.2. Approximate Entropy

Approximate entropy was analyzed for all COP data. A representative view, from subject
1 of the moving ApEn signal for a baseline EOFT condition in the AP and ML directions is seen
in Figure 2.18 and a view of the moving ApEn of a much less stable, ECFTanDF trial is seen in

Figure 2.19. The less stable condition in Figure 2.19 has a maximum magnitude that is much

greater than the stable, baseline condition.
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Figure 2.18. Approximate entropy of an eyes open, feet together trial from subject 1
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Figure 2.19. Approximate entropy of an eyes closed, feet tandem, dominant foot in front trial
from subject 1

Figures 2.20 — 2.25 show the comparison of the average ApEn between each stability
conditions for all subjects in both the AP and ML directions. As the conditions become less
stable, the signals become more irregular and ApEn increased in both AP and ML directions.
Additionally, the results of individual one-way ANOVA tests are indicated above each plot with

*significance at p < 0.05, **significance at p < 0.01, and ***significance at p < 0.001.
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Figure 2.20. Approximate entropy of each condition for subject 1
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Figure 2.21. Approximate entropy of each condition for subject 2
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Figure 2.22. Approximate entropy of each condition for subject 3
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Figure 2.23. Approximate entropy of each condition for subject 4
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Figure 2.24. Approximate entropy of each condition for subject 5
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Figure 2.25. Approximate entropy of each condition for subject 6

In most cases, the ECFTan trials showed the highest approximate entropy of all of the

conditions. The only subject for which that did not apply was subject 4, shown in Figure 2.23,

51



which showed much higher variability between trials of the same conditions than other subjects,

affecting their results.

A 2-sided Dunnett’s post-hoc test was performed for all subjects and directions that
resulted in a significant ANOVA test. This test compares all conditions to the baseline EOFT
condition and indicates which differ significantly. Those results are seen in Figure 2.26 — 2.31,
indicated by *significance at p < 0.05, **significance at p < 0.01, and ***significance at p <
0.001. These are seen on plots showing the difference in ApEn between the EOFT condition and

every other condition.
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Figure 2.26. Difference in approximate entropy between each condition and eyes open, feet
together for subject 1 with Dunnett’s post-hoc test results shown
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Figure 2.27. Difference in approximate entropy between each condition and eyes open, feet
together for subject 2 with Dunnett’s post-hoc test results shown
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Figure 2.28. Difference in approximate entropy between each condition and eyes open, feet
together for subject 3 with Dunnett’s post-hoc test results shown

53



Ditferepce in Aakn from LOI T sondion
N AF for Subject 4

L.

et roan rans rcem e
Eawnce Candition

o [l e
o
b

Apy

Figure 2.29. Difference in approximate entropy between each condition and eyes open, feet
together for subject 4 with Dunnett’s post-hoc test results shown
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Figure 2.30. Difference in approximate entropy between each condition and eyes open, feet
together for subject 5 with Dunnett’s post-hoc test results shown
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Figure 2.31. Difference in approximate entropy between each condition and eyes open, feet
together for subject 6 with Dunnett’s post-hoc test results shown

Post-hoc analysis showed that there is a significant difference from the baseline EOFT
condition for all remaining stability conditions aside from ECFT in all subjects, excluding
subject 4. In addition to that, subjects 1, 2 and 6 showed significant difference in the ECFT

condition in at least one direction as well.

2.3.3. Velocity

Magnitude of velocity and PSD of velocity were both analyzed for all COP data. A
representative view, from subject 1, of the velocity signal of the baseline EOFT condition in the
AP and ML directions is seen in Figure 2.32 and a view of the velocity of a much less stable,
ECFTanDF trial is seen in Figure 2.33. The less stable condition in Figure 2.33 has a maximum
magnitude greater than the stable, baseline condition. Additionally, for both stability conditions,

the velocity in the ML direction has a maximum magnitude that is higher than the AP direction.
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Figure 2.32. Velocity of an eyes open, feet together trial from subject 1

COP Velocity in AP dicection for
baseline ECFTanDF trial

0 5 10 15 20 25
Time (s)

Velcoby (mrms|

150 4

1004

-0 4

~100 4

COP Velocaty In MU girection for

baseline ECFTanDF tral
|
|
5 10 15 2 75 %
Time (5]

Figure 2.33. Velocity of an eyes closed, feet tandem, dominant foot in front trial from subject 1

A representative view of the PSD of the velocity signals seen in Figures 2.32 and 2.33 are

shown below in Figures 2.34 and 2.35, respectively. For the EOFT trial in Figure 2.34, the AP

and ML directions show content up to around 6 Hz. For the ECFTanDB trial in Figure 2.35, both

directions show content up to a higher frequency, with the AP direction having content until

around 10 Hz and the ML direction having content until around 8 Hz. In addition to having



content at higher frequencies, the magnitude of the content was also greater by an order of

magnitude in the less stable condition in Figure 2.35.
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Figure 2.34. PSD of velocity signal of an eyes open, feet together trial from subject 1
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Figure 2.35. PSD of velocity signal of an eyes closed, feet tandem, dominant foot in front trial
from subject 1

Figures 2.36 — 2.41 show the results for each stability condition in the AP and ML
directions with the average velocity magnitude in the leftmost plots and the average total power

in the rightmost plots. The magnitude of velocity was observed to be greater as stability

57



decreased as all conditions with decreased stability from baseline had a greater average velocity
than the EOFT stance in all subjects. Additionally, total power also increased as stability
decreased. While there are some slight differences between subjects and how much each stability
condition affected them, all subjects showed the same trend of increasing velocity and PSD of
velocity as conditions became less stable. Standard error bars are shown for each stability
condition to indicate the amount of variability in the data. The results of individual one-way
ANOVAs are indicated above each plot with *significance at p < 0.05, **significance at p <

0.01, and ***significance at p < 0.001.
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Figure 2.36. Average velocity and total power of each condition for subject 1 with 1-way
ANOVA results shown
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Figure 2.37. Average velocity and total power of each condition for subject 2 with 1-way
ANOVA results shown
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Figure 2.38. Average velocity and total power of each condition for subject 3 with 1-way
ANOVA results shown
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Figure 2.39. Average velocity and total power of each condition for subject 4 with 1-way
ANOVA results shown
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Figure 2.40. Average velocity and total power of each condition for subject 5 with 1-way
ANOVA results shown
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Figure 2.41. Average velocity and total power of each condition for subject 6 with 1-way
ANOVA results shown

In most cases seen in Figures 2.36 — 2.41, the ECFTan trials showed the highest velocity
and total power of all conditions. Whether having the dominant foot forward or backward

resulted in more instability varied by subject.

A 2-sided Dunnett’s post-hoc test was performed for all subjects and directions that
resulted in a significant ANOVA test. This test indicates which conditions differ significantly
from the baseline EOFT condition. Those results are seen in Figure 2.42 — 2.46, indicated by
*significance at p < 0.05, **significance at p < 0.01, and ***significance at p < 0.001. These are
seen on plots showing the difference between the baseline EOFT condition and the remaining
conditions from results shown above in Figures 2.36 — 2.41. As subject 4 was the only subject

whose ANOVA test was not significant, a difference plot was left out.
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Figure 2.42. Difference in velocity and total power between each condition and eyes open, feet
together for subject 1 with Dunnett’s post-hoc test results shown
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Figure 2.43. Difference in velocity and total power between each condition and eyes open, feet
together for subject 2 with Dunnett’s post-hoc test results shown
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Figure 2.44. Difference in velocity and total power between each condition and eyes open, feet
together for subject 3 with Dunnett’s post-hoc test results shown
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Figure 2.45. Difference in velocity and total power between each condition and eyes open, feet
together for subject 5 with Dunnett’s post-hoc test results shown
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Figure 2.46. Difference in velocity and total power between each condition and eyes open, feet
together for subject 6 with Dunnett’s post-hoc test results shown

Post-hoc analysis illustrates that the ECFTan conditions showed statistically significant
differences from the baseline EOFT conditions more often than the others. Aside from subject 4,
all subjects showed significant differences in at least one of those conditions for magnitude of
velocity and velocity PSD except for one instance where subject 5 did not show significance in
either of them for magnitude of velocity in the AP direction. Comparatively, for all instances
except one, which was velocity magnitude in the ML direction for subject 6, the ECFT condition
did not show a statistically significant difference from the baseline EOFT condition. The
EOFTan conditions showed a significant difference from baseline about half of the time for both

velocity magnitude and PSD.
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2.3.4. Regression

Regression analysis was completed on groups of trials of the same stability condition
across all subjects, resulting in models of what any one condition may generally look like. These
are shown in Figures 2.57 — 2.52, where the blue line is the average of all trials for the given
stability condition, the purple line is the regression model, and the red lines represent the 95

percent prediction interval.
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Figure 2.47. Regression model for all eyes open, feet together trials

63



COP Approximation (mem from starting focaton)

COP Appeoximation (mem from starting locatian|

Ragression model far all ECFT triats In the AP direction Regression modet far all ECFT trials in the M, direction

R?'=09 R? = 0.47
) L
— Aawtage Sgnal -
a- — Model el
—— 95% prediction nterval
21 58 24
-
o g o
-
-2 4 E ~2
-l 5 -
&
-6 2 -
3 — Average Sgnal
=83 & 51— Model
v — G5% prediction nterval
“i0+—r T v T r T T «104—r - T - T v T
0 5 10 15 n 25 0 0 S 10 15 20 35 30
Time (s) Time (s}

Figure 2.48. Regression model for all eyes closed, feet together trials
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Figure 2.49. Regression model for all eyes open, feet tandem, dominant foot in back trials
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Figure 2.50. Regression model for all eyes open, feet tandem, dominant foot in front trials
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Figure 2.51. Regression model for all eyes closed, feet tandem, dominant foot in back trials
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Figure 2.52. Regression model for all eyes closed, feet tandem, dominant foot in front trials

A pattern is seen in the above figures where trials of less stability have a wider 95 percent
prediction interval and the R? value is lower. Furthermore, in all conditions except for

EOFTanDB, the R? value is greater in the AP direction than the ML direction.

In addition to models for each individual stability condition, regression was completed
for all trials of all subjects to create a model for a neurotypical subject in quiet standing. This is

shown in Figure 2.53.
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Figure 2.53. Regression model for all trials

In Figure 2.53, it can be observed that the R? value of the AP direction is much higher
than the R? value for the ML direction and the 95 percent prediction interval is approximately

twice as wide with a width of nearly two versus a width of one in the AP direction.

2.4. Discussion

Postural control is a fine-tuned system in the human body that is very adept at keeping a
person upright, particularly during quiet standing. It is important to understand the processes that
affect this mechanism, and the degree to which it is affected. For this study, it was assumed that
while postural control is mostly equivalent for all individuals, every person’s postural control
mechanism is unique, due to learned experiences [25]. Therefore, it is necessary to consider that
each person’s response to changing conditions may be slightly different. In previous studies,
EMG signals in the lower leg muscles were assessed for changes in connectivity with increasing
instability to understand the neural mechanisms responsible for postural control [32]. In the

current study, signals from COP and COM measurements were assessed under the same
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increasingly unstable conditions in an effort to develop indices of interest that can help
accurately identify the degree of postural stability. These indices may be used to screen for
conditions like concussion in a more objective manner. Results showed that ApEn, velocity
analysis, and regression were clearly and significantly changed between very stable and less
stable quiet standing positions for each subject.

Additionally, results, along with literature, show that COP and COM are not effective
measures for determining neural activity based on frequency bands. As previous studies have
shown, and as was corroborated in this study, COP and COM data have content at frequencies
which are limited to about 5 Hz and less [33]-[35]. This range encompasses only the delta (0 — 4
Hz) and very beginning of the theta (4 — 8 Hz) neural bands. These are associated with deep
sleep and very slow brain activity, such as that which occurs during daydreaming. As postural
control occurs in a much more involved state of neural activity, it is clear that COP and COM
cannot accurately represent neural activity using frequency analysis. This is because the two
signals are not measuring an immediate and direct response from the brain. Instead, they measure
body movement which only occurs as needed to keep a person’s balance. Therefore, the
frequencies at which the COP and COM signals occur cannot be related to the frequency at

which neural activity is occurring.

2.4.1. COP and COM Correlation

The COP and COM signals look very similar when they are standardized to have a mean
of zero and a standard deviation of one and compared directly. The main difference was that the
COP signal displays many more spikes than the COM signal, with a greater magnitude. This

relates to the COP oscillations that occur during quiet standing. Since the COP moves more
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significantly in all directions than the COM, it is expected to have a greater magnitude.
Additionally, since the COP moves in order to keep the COM in a relatively steady location, it
would be expected for the COP to make many small movements so as to keep the COM steady
and avoid many movements in that signal. Further analysis was necessary to determine if the
differences seen are indicative of a difference in the information that they provide, or if they

truly provide the same information.

Autocorrelation shows how similar a signal is to itself at different amounts of lag.
Similarly, cross-correlation shows how similar one signal is to another signal at different amount
of lag. Therefore, if an autocorrelation signal looks the same as a cross-correlation signal, where
one of the signals correlated was the same as the signal used for autocorrelation, that means the
two signals look the same over the time that they were recorded. A comparison of the
autocorrelation of the COP signal and the cross-correlation of the COP and COM signals shows
that the two look very similar. Both high stability and low stability conditions displayed this
same result. There are slight differences between the two correlation results where the
autocorrelation has more spikes and the cross-correlation is a smoother line, but the overall

shapes of the curves are the exact same.

Given the knowledge gained by the auto and cross-correlation analysis that COP and
COM signals are, in fact, highly correlated, it was necessary to quantify just how similar the
COP and COM signals were. An important factor of similarity is whether or not the two signals
are dependent. Pearson’s correlation coefficient provided insight into this by assigning a value
between negative one and one to the pair of signals, where the high and low values of that range

show a perfect linear relationship between the two variables in either the negative or positive
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direction and a value of zero shows no relationship whatsoever. This coefficient was calculated
between COP and COM signals for one trial from every stability condition and for each subject
in both AP and ML directions. Of the pairs that were tested, 37.5 percent displayed a very strong
relationship, 56.9 percent displayed a strong relationship, and only 5.6 percent displayed a
moderate relationship. Given the large number of strong and very strong relationships, it was
reasonable to assume that COP and COM signals provide very similar information and it was not
necessary to consider both in further analysis. As COP is an easier signal to record, this metric

was used for all further analysis.

2.4.2. Postural Control and Changing Stability Conditions

2.4.2.1.  Center of Pressure Irregularity

A very clear pattern emerged with ApEn analysis. All subjects displayed an increase in
ApEn while under increasingly unstable conditions when compared to baseline EOFT. Aside
from subject 4, all subjects showed the highest ApEn in the two ECFTan trials. Subject 4 was
different from the rest due to increased variability among trials of the same condition. This is
evidenced by the error bars seen in Figure 2.23. Due to this variability, it is not unexpected that
the patterns of the subject may look different than those of other, more consistent subjects.

Furthermore, in all subjects aside from subject 4, all stability conditions except for ECFT
showed significant difference from the baseline EOFT condition based on Dunnett’s post-hoc
testing. On some occasions, even the ECFT condition showed statistically significant difference
in ApEn from the baseline condition, despite the fact that the condition does not display a large

difference in stability. This shows that ApEn can be a very sensitive and useful metric for
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analyzing postural control. Changes in ApEn did not appear to differ between the AP direction

and ML direction.

2.4.2.2.  Oscillation Velocity

Both magnitude and frequency content of the velocity of COP oscillations were shown to
increase as quiet standing stances became less stable. This means that as a subject was less
stable, their COP moved from behind to in front of their COM more quickly when they were less
stable and that it did so more frequently. This pattern was consistent across both AP and ML
directions. This is reasonable because when a perturbation to balance is more extreme, the
postural control mechanism must act more significantly and with stronger force in order to
counteract the impedance to balance. With less stability comes a higher number of balance
perturbations, as well, increasing the necessary frequency of oscillations.

Dunnett’s post-hoc testing showed that the only conditions that were consistently
statistically significant in their difference from the baseline EOFT condition were the two
ECFTan conditions. This may be EC and FTan are the two characteristics that were assumed to
decrease stability the most in this research. Therefore, it would be expected that the conditions
with the lowest stability would most often show statistical significance in their results when
compared to the most stable condition.

Velocity analysis was not able to identify a significant result from ECFT trials aside from
one instance with magnitude of subject 6 in the ML direction. In addition to that, it was only able
to identify significant results from EOFTan conditions around half of the time. This shows that
velocity analysis of COP oscillations may not be sensitive to small amounts of instability.

However, it has shown that it is reliable when stability conditions are significantly affected.
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2.4.2.3.  Baseline Models

Baseline models developed using regression were useful in corroborating results that
were obtained using other analysis methods. These models showed a general trend of decreased
R? values as stability decreased. This is important as it illustrates the fact that lower stability
results in less consistent COP data with more variability, leading to information held in the signal
that could not be explained by the regression model. This agrees with what ApEn and velocity
analyses determined. Regression, however, was the metric that displayed the most difference
between the two directions. A pattern of much larger R? values among models in the AP
direction than models in the ML direction was evident, showing that ML motion has more
variability. This difference in variability is likely linked to the fact that muscles that facilitate
flexion and extension are much stronger than muscles that facilitate abduction and adduction
[43], [44]. Increased strength in the AP direction would allow for more control of the body and
its posture when moving in that direction than in the ML direction, leading to less irregularity
and, therefore, larger R? values when adjusting front-to-back.

The models may be more useful moving forward. Having a model of what each stability
condition looks like, on average, along with what quiet standing of a neurotypical subject looks
like will be invaluable. It may show differences between subjects with and without concussions.
The 95 percent prediction interval may allow ease of identifying largely different behavior in

future research.

2.4.3. Comparison of Analysis Methods

Postural stability affected all methods used for analysis and the computed indices showed

significant differences resulting from changes in stability based on COP oscillation data
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recordings. When all conditions were compared to baseline using Dunnett’s post-hoc analysis,
ApEn was able to find significant changes with much more sensitivity than velocity magnitude,
velocity PSD, and regression. While that analysis was able to find significant differences in
nearly all stability conditions, the velocity measures were only able to indicate significant

deviances with consistency in the two least stable conditions, ECFTan.

Velocity analysis was only able to find significant differences in the ECFT and EOTan
conditions about half of the time. It is likely that the velocity analysis is limited in its usefulness
due to the limits that the body has as far as how quickly it can move. ApEn is not limited by the
ability of the human body while velocity of motion is constrained by physiologic limitations of

muscle activation kinetics.

While regression analysis did show changes in R? values as stability decreased, these
were not consistent and not significant to justify the use of regression analysis for quantifying
changing conditions. A general pattern existed, which corroborated results from the other
analyses, however, it would not be of much use on its own to determine the stability of one’s

postural control system.

2.4.4. Limitations and Future Considerations

This study was limited by the small number of subjects that were involved in data
collection. Having a larger pool of volunteers would be beneficial to determine whether the
findings that were obtained are applicable to a wider range of people. Additionally, it would have

allowed for any outliers to become obvious, as opposed to potentially be factored into the results.
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Future work on this data should analyze the angular acceleration of the COP and COM
signals to identify how COP oscillations pivot as the two signals move toward and away from
one another. Namely, considering the distance between the COP and COM over time could lead
to interesting findings as it is directly proportional to the angular acceleration, but does not
require any derivative calculations. Future analysis should also consider non-neurotypical
subjects. Particularly, it should consider subjects who are suffering from a concussion. The same
data collection procedure could be completed on those subjects to determine if analysis of their
COP displays significantly different results than a neurotypical subject. This analysis could be
the next step in developing a definitive diagnostic tool for concussions. Additionally, future
analysis should involve an increase in sample size of both neurotypical and non-neurotypical

subjects. This will allow for results that can be applied to a larger and more varied population.

2.5. Conclusion

Analysis of COP and COM signals showed that the two signals provide very similar
information. Therefore, it was unnecessary to consider both throughout the entirety of the
analysis and all research could be performed on only the COP signal. This is important as
collection of COP data is much simpler and more inexpensive than collection of COM data. Not
needing a COM signal for performance of this analysis will allow for collection of all necessary
data in future studies and in a potential concussion diagnostic tool to be completed in many
different locations. For example, this could be completed at the site of a suspected concussion as

opposed to in a well-equipped laboratory.

Further analysis of COP oscillations in quiet standing of neurotypical subjects provides

insight into how the body compensates for small amounts of instability. Strong evidence has
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been found to suggest that variability, velocity, and frequency of the COP all increase as stability
also increases. All three of those analyses were able to consistently indicate significant
differences between a baseline EOFT condition and much less stable ECFTan conditions. ApEn
was more sensitive than the other techniques and was able to identify significant differences
between baseline and all tandem stances, while also indicating significance between EO and EC
of the feet together stance. Regression models corroborated other findings and will provide a
resource to compare further research to when concussed subjects are being studied. The results
of this study will be useful as a thorough understanding of how the postural control system
functions under baseline, neurotypical conditions. Having this knowledge will make it possible
to compare subjects with concussions and potentially identify multiple metrics that can more

objectively link brain functionality to postural control.
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Chapter 3. Extended Review of Literature and Extended Methodology

3.1. Extended Review of Literature

3.1.1. Quiet Standing

Quiet standing is the act of standing upright on two feet [45]. As most humans are able to
perform this from a very young age, it is an easy stance to that can serve as a baseline for
stability research. Additionally, quiet standing is quite stable, which allows for data collected in
this position to indicate the innate postural control that humans utilize to keep from falling in the
absence of direct perturbances to their balance. Examples of foot orientation for different quiet
standing stances are shown in Figure 3.1. Of these, the feet apart stance was used for the static
trial for instrumentation calibration, and feet together and full tandem were used for data

collection trials in this research.

Semitandem Full

Feet tandem

Feet apart together

Figure 3.1. Quiet standing foot positioning, adapted from [46]
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While quiet standing is relatively stable and the postural control mechanism does not
have to account for external perturbances that may be encountered while moving such as
unstable surfaces or physical pushing, there are still certain mechanisms that do affect balance.
Gravitational force always plays a role as it acts on all parts of the body. If it pulls more on one
side of the COM than another due to body positioning, the postural control mechanism must
account for those forces [47]. Additionally, internal perturbances such as the natural respiratory
oscillation affect balance as well [3]. In the case of respiration, the cyclical movement of the
diaphragm and lung expansion slightly alter the COM location, requiring a postural control

response.

3.1.2. Postural Control

There are three important metrics that are involved with describing postural control
including center of pressure (COP), center of mass (COM), and base of support (BOS). The COP
is the point location of the resultant ground reaction force where the body makes contact with the
ground and where the moment of the COP is equivalent to the sum of the moments of all ground
reaction forces exerted on the body by the ground [2]. The COM is the point location on the
body that is representative of all of its mass, where the moment of the COM is equivalent to the
sum of the moments of the weight acting at every point on the body, located approximately one-
half to two-thirds of a person’s body height above the ground [2]. The BOS is the perimeter
created around the bounds of the parts of the body that are touching the ground, typically the feet

[2]. COP, COM, and BOS are illustrated in Figure 3.2.
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Center of Mass

Center ot
Pressure

Reaction Forces

Figure 3.2. COP, COM, and BOS for human body, adapted from [48]

Postural control involves accounting for external and internal forces on the body, such as
gravity, wind, physical pushing, respiratory cycles, and more in order to maintain equilibrium of
balance where the COM remains within the bounds of the BOS [49]. As the BOS can only safely
accommodate a few degrees of sway of the COM before balance is lost, movements associated
with postural control are often very minute [49]. For bipedal and quadrupedal beings, these small
movements are structured in a way that will return the body to a standard reference position [3].
For humans, this is an upright position where the COP and COM are in similar locations on the

ground and at the center of the BOS.
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3.1.2.1.  Postural Sway

As the body engages in quiet standing, postural control mechanisms are continuously
engaged in the form of oscillations of the COP and COM, commonly referred to as postural sway
[2], [18]. In quiet standing, the COP oscillates about the COM, which also exhibits a small
oscillatory pattern. In order for the COP to assist in maintaining a position of the COM that is
suitably within the BOS so that a person can be balanced, the amplitude of the COP oscillations
is greater than that of the COM [18]. As COP movement is more pronounced, the oscillations of
the COM are often overlooked. The sway of COP and COM can be seen in Figure 3.3, where it

is clear that COP follows the same general motion of the COM, but to a greater degree of

magnitude.

COM / COP excursion (% basewidth)
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Figure 3.3. COM and COP oscillations during quiet standing, adapted from [50]
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Postural sway acts as a constant correction for its own movements. If COP oscillations
were to cease, there would be nothing to counteract the movement of the COM, which would
result in the person’s mass continuing to move in one direction until it has left the bounds of the
BOS, causing a fall. Both fatigue of the ankle muscles and absence of vision have been shown to
significantly increase sway [20], [S1]. This is attributed to the fact that fine control of the COP
oscillations has been suppressed in both situations, causing either overcorrection or under

correction and the subsequent need for a stronger response.

3.1.2.2.  Strategies

When assessing the strategies behind postural control, a neurological factor that must be
considered is whether or not the perturbation of stability was foreseen. Postural control can be
either predictive or reactive. If the person is aware of the fact that a perturbation to their balance
is imminent, subconscious predictive postural control will be activated and may involve a
voluntary movement or increase in muscle activity before the expected disturbance occurs [1].
Reactive postural control, however, involves muscular response and movement of the body

following an unpredicted disturbance to the balance in order to recover after the fact [1].

Typically, predictive postural control is completed with the ankle strategy [22]. That is
where most of the compensation for a perturbation of balance is made via the angle that the ankle
creates between the foot and the leg as opposed to compensating by moving the upper body. This
allows for low difficulty balance corrections to be made with fine accuracy and without affecting

the positioning of the rest of the body significantly.
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Reactive postural control is typically completed using the hip strategy. This strategy
adjusts the angle of the hips relative to the upper and lower body in a similar way to how the
ankle strategy works. It is useful for stronger perturbations as well as those that occur
unexpectedly [13]. This is because in both cases, more significant instability occurs requiring a

more significant reactive motion of the body to counteract it.

When perturbations are too strong or unexpected for the hip strategy to provide postural
control alone, the hip and ankle strategies will work in tandem with one another. In this case, the
hip movement accounts for a large amount of reactive activity while the ankle movement may
allow the person to have prepared themselves slightly for the perturbation. In the case where the
hip and ankle strategies, together, are not enough to keep a person upright, the step strategy will
be utilized. This is where the person moves one foot in the direction that they are falling to widen

their BOS. These strategies are shown in Figure 3.4.

Ankle strateqy Hip strateqy Stepping strategy

Figure 3.4. Three postural control strategies [52]
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The activation of the strategies discussed is not a voluntary reaction. All of postural
control is involuntary to ensure a reaction that is as quick as possible to prevent a person from
falling. However, these reactions are not the same as a spinal stretch reflex, another involuntary
movement of the body, such as the knee jerk reflex. In that movement, the body recognizes when
a muscle is stretched beyond the typical amount at a time where it is not expected. When this is
sensed, the body immediately contracts the muscle in order to return it to its homeostatic state
[53], [54]. There is very little latency between the onset of the muscular stretching and muscle
activation. With responses to postural perturbations, however, longer latencies exist. This shows
that the CNS has a greater ability to modify the postural responses than it does to modify stretch
reflexes. Shorter latencies are associated with decreased involvement of the cerebral cortex [5].
In postural control, a shorter latency could indicate that the perturbation was one that was not

very complex to recover from or one that the body is naturally accustomed to dealing with.

In addition to the latency that exists between the CNS and the body’s reaction to a
balance perturbation, the CNS also has the ability to learn from its past. Studies suggest that the
cerebellar-cortical loop can adapt postural control responses based upon prior experiences. They
also suggest that the basal ganglia-cortical loop can judge the current context and select postural
responses that will be optimal given the known situation [5]. This functionality allows for
stability and balance to be improved upon over time as the CNS understands the best way to
counteract perturbations after they have previously occurred. When the CNS is required to act
from memory, longer latencies between perturbation and action can be expected. This means the
reaction to the perturbation may be slightly delayed, however, the action that the body’s postural
control mechanism is taking will be more efficient and specialized to the current situation, so the

latency should not result in a fall.
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3.1.2.3.  Inverted Pendulum Model

In human mechanics, the ankle and hip strategies described above are often described as
an inverted pendulum model. The ankle strategy can be described as a single inverted pendulum
(SIP), while the combined ankle and hip strategy is described as a double inverted pendulum
(DIP). These models are shown in Figure 3.5, where the distance from the ground to different
points on the body as well as angles between these points can be used in mechanics equations to

quantify the strategies.
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Figure 3.5. Single (left) and double (right) inverted pendulum models adapted from [55]

In the SIP the ankle is the pivot point of the pendulum [2], [24]. In this case, it is assumed
that the body detects angular deviation about the ankle pivot point and sensory systems indicate

necessary corrections that must be made to eliminate that deviation. Those come in the form of a
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corrective torque about the ankle [24]. The DIP functions similarly to the SIP, except for the
additional pivot point at the hips [2], [24]. As studies have shown that even during quiet standing
the hip strategy is employed, however slightly, the DIP provides a more accurate representation
of the human postural control strategy during quiet standing than the SIP [16], [56], [57].
Utilizing these models is useful as they allow for mechanics theorems and equations that have
been studied and proven for pendulums, to be applied to the human body. This leads to the

ability for quantitative calculations about postural control.

3.1.3. Brain Health and Postural Control

It is widely known that concussion results in symptoms of dizziness and balance
impairments. These symptoms are due, in part, to the damage of the vestibular system that are
associated with concussions [58]. The vestibular system is responsible for transmitting sensory
information about motion, head position, and spatial orientation as well as initiating motor
function for maintaining balance and stability. Therefore, impairment of this system can be
expected to have a significant effect of postural control, making research on the topic an

important step in developing a definitive concussion diagnosis tool.

In addition to vestibular damage, concussions have been shown to damage individual
neurons in the brain in differing location, based upon where impact with the head occurred and
how strong the impact was [59], [60]. This damage happens when the neurons must change
direction in order to accommodate rapid acceleration and deceleration of the brain. Depending on
the location of damaged neurons, many systems in the body can be affected, leading to different

symptoms in different people.
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3.2. Extended Methodology

3.2.1. Participants

Subjects included in this study were all healthy with no history of neurological or
muscular disorders. Additionally, volunteers were excluded from participating if they had a
history of head trauma resulting in loss of consciousness, a history of reconstructive surgery due
to a musculoskeletal injury of the trunk or lower extremities, or any non-weight bearing injury to
the lower extremities within the 12 months prior to data collection. To gain an understanding of
the subjects’ current activity level and their history that could contribute to tuning of their
postural control system, all participants were asked to fill out a questionnaire. In addition to the
subject provided information, body height (cm), mass (kg), and inter-anterior superior iliac spine
(ASIS) distance (cm), as well as leg length (cm), knee width (cm), and ankle width (cm) for the
left and right legs were collected prior to subject preparation. The Full-Body Plug-in-Gait (FB
PiG) model, which was used for motion capture analysis to obtain center of mass data, required
those measurements for normalization of the calculated outputs. Characteristics of each subject

are shown in Table 3.1.

Table 3.1. Subject Characteristics

Subject  Gender Foot Dominance Age Height (cm) Weight (kg)
SBO1 F Right 26 170.4 64.5
SB02 F Right 21 162.6 64.7
SB03 M Left 23 174.7 63.9
SB04 M Left 28 190.0 98.2
SB05 F Right 25 163.0 70.1
SB06 F Right 25 164.0 63.2
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3.2.2. Experimental Procedure

Prior to following the experimental protocol for data collection, subjects were asked to
perform a static trial to calibrate a Vicon labeling skeleton from an existing Vicon skeletal
template. This enabled Nexus to automatically detect a subject and determine the proper
reconstruction labels for the subsequent trials for data acquisition. This static trial was performed
by having the subject hold a position with their feet shoulder width apart, arms raised slightly at
the sides, and with their palms and head facing forward for one second prior to starting the
experimental protocol. The calibration process resulting from the combination of the
anthropometric measurements of each subject that were collected before subject preparation and
the static trial allowed for the system to have the ability to calculate body segments, joint centers,
and determine a local reference system for dynamic calculations. Once the static trial was
complete, subjects were asked to complete the experimental protocol using stability conditions in
the order shown in Table 3.2.

Table 3.2. Quiet standing balance conditions
Order Balance Condition Description

1 EOFT Eyes open, feet together (most stable, baseline)
2 ECFT Eyes closed, feet together

3 EOTanDB Eyes open, feet tandem, dominant foot in back
4 ECTanDB Eyes closed, feet tandem, dominant foot in back
5 EOTanDF Eyes open, feet tandem, dominant foot in front
6 ECTanDF Eyes closed, feet tandem, dominant foot in front

It was assumed that the EOFT condition would be the most stable. This allowed for a
control condition that would provide a baseline measure against which the other, less stable,
conditions could be compared. To ensure a standardized protocol between subjects as well as to

constrain potential effects of fatigue, a 30 second break was required between each trial, with a
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2-minute break between each condition. To ensure full recovery, subjects were asked to sit

during the 2-minute break.

For stability conditions that utilized a tandem stance, subjects were informed of the COP
distribution between their two feet prior to the onset of the trial and were asked to adjust until
equal distribution was realized. After the trial had begun, subjects were given no further

information about the distribution of their COP.

The use of stepping, arm motions, ankle strategy, and hip strategy were expected during
the course of the study. Subjects were instructed to attempt to regain their balance and return to
the testing stance as quickly as possible if they ever felt that they were losing their balance
during a trial. In the event that a subject moved their feet off the force plate, the trial was redone.

Foot orientation on the force plates for each of the positions required are shown in Figure 2.5.

The blue rectangles shown in Figure 2.5 represent 1.5-inch-wide athletic tape, which was
used to indication the junction between force plates. For feet tandem positions, subjects were
instructed to place the toe of the back foot and the heel of the front foot on the edges of the tape.
This ensured that each foot was entirely on its respective force plate, guaranteeing the COP
oscillations for each foot were being collected independently. Additionally, the inclusion of the

tape provided standardization of feet position between subjects.
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3.2.3. Data Acquisition

3.2.3.1.  Subject Preparation

Preparation for the collection COM data required marker placement on the subject
following pre-amplifier placement. Highly reflective, spherical markers were placed on the

subject as specified by the FB PiG model for motion capture as illustrated in Figure 2.4.

The modified version of this model requires the inclusion of the fifth metatarsal (5"-
Met) and a medial knee marker in place of a knee alignment device. The FB PiG 5" — Met model
was a predefined model used solely for the purpose of this study. Markers were secured to their

necessary locations using double-sided hypoallergenic tape and 3M tape.

3.2.3.2.  Instrumentation

COP data were collected with two floor-embedded AMTI (Advanced Mechanical
Technology Inc., Watertown, MA) force plates. These measured the forces and moments applied
to the ground during quiet standing. Ground reaction forces were collected at a sampling
frequency of 1200 Hz. 16 Vicon MX cameras (Oxford Metrics, Oxford, UK) were utilized for
COM data acquisition. These cameras tracked movement trajectories of the musculoskeletal
system, with the use of the modified FB PiG model for marker location, at a sampling frequency
of 120 Hz. For both of these signals, the coordinate system used represents the anterior/posterior
(AP) directions of the body on the x-axis and the medial/lateral (ML) directions of the body on
the y-axis. Both of those axes were represented with a respective signal to report the location on
the coordinate system. Nexus motion capture software v2.8 (Oxford Metrics, Oxford, UK) was

used to synchronize the force place and motion capture data.
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3.2.4. Data Analysis

All recorded COP and COM signals were analyzed using time and frequency methods of
univariate and bivariate analysis to determine patterns and indices present within them during
quiet standing for neuro-normative subjects. This analysis was done using Python 3.7.6 (Python

Software Foundation, https://www.python.org/).

3.2.4.1.  Signal Preprocessing

Numerous studies on the frequency content of postural sway have shown that its signal
content exists at or below 5 Hz [33]—-[35]. For this reason, it was beneficial to apply a filter to the
data so that only the frequencies for which true postural sway content would be found was
analyzed. A fourth order, zero-lag, low-pass Butterworth filter was applied with a cutoff
frequency of 6 Hz using the Vicon Nexus motion capture software v2.8 (Oxford Metrics,
Oxford, UK).

An additional preprocessing step was necessary for the tandem feet trials, as they were
recorded using two separate force plates, one under each foot. It was important to record the data
in this way to ensure that the force plates registered the activity of each foot, respectively.
However, since the feet together trials only had COP data from one force plate, it would be
impossible to directly compare the COP data from two separate force plates from the feet tandem
trials. In order to avoid this issue, a single resultant COP was calculated for feet tandem trails
based on a weighted percentage of the COPs recorded on the two force plates, taking into

consideration the amount of force that each foot was exerting on the ground and the position of

each COP as defined below:
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COP,p; = COP, —2— + COP, —2& 3.1)

FzL+FzR FzL+FzR

Where COP;, and CO Py are the positions of the COP for the left and right foot,
respectively, and F,; and F,j are the ground reaction force of the left and right foot, respectively.
This calculation was repeated twice, once using COP positions in the x direction and once using
COP positions in the y direction to obtain both the resultant x and y coordinates for the combined

COP. The combining of two individual COPs into one net COP is shown in Figure 3.6.

cop

Figure 3.6. Combination of two individual COPs into one resultant COP

3.2.4.2.  Approximate Entropy

While there are many different types of entropy, approximate entropy (ApEn) was chosen
to determine the uncertainty in all COP signals. Approximate entropy differs from other forms of
the metric in important ways. It differs from joint entropy which measures the uncertainty in two
random variables, conditional entropy which measures the average uncertainty in one random
variable given a second random variable, transfer entropy which describes information transfer

between two signals, and cross-approximate entropy which describes the similarity of patterns
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between two time-series signals. Comparatively, approximate entropy quantifies the regularity of

a single time-series signal and is defined as follows [29]:
—ApEn = ©@™*1(r) — ®™(1) (3.2)

Where m and r are fixed values, m being the length of compared runs and r is a filter

value, and @™ (r) is defined as:
O™(r) = (N —m+ D)7 ZE™ n [ ()] 3.3)
Where N is the total number of data points and C/™(r) is defined as:

ber of j s<(N-m+1)such that d[x(i),x(j)]s
Cl-m(T') _ humber ofj mN_;:icl at d[x(@),x(j)]sr (3.4)

Where d[x(i), x(j)] is the maximum distance between the respective scalar components
of vectors x(i) and x(j).

ApEn is especially adept at quantifying regularity in short time-series signals and is good
at suppressing noise and resisting outliers. These attributes make it a suitable analysis for this
research as it allows for analysis to be completed using a moving technique with small windows
of data to account for potential changes in ApEn over time. Additionally, it ensures that small
amounts of noise that were not able to be filtered out and outliers that are bound to occur in data
do not greatly affect the results. A calculated ApEn result that is lower in value indicates a signal
that is more regular. For example, a periodic signal will have a lower ApEn value than random
noise. This can provide knowledge about whether postural control becomes more or less regular

as stability conditions change.
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Moving approximate entropy was calculated for all COP trials using windows of size
1800, or 1.5 second intervals, with a 50 percent overlap to create 39 segments. Performing this
calculation across windows allowed for the segments of data to be a suitable length for an ApEn
calculation, as the entire time-series signal would have been too long. Additionally, this allowed
for visual understanding of how the approximate entropy changed over time. While it was
necessary to calculate a moving ApEn, the 39 resulting values were averaged to obtain a single
approximate entropy value for further calculations and ease of comparing between different

stability conditions.
3.24.3.  Velocity

It is known that the steeper a signal appears when plotted against time, the higher its
velocity is. This is because more has changed over a shorter amount of time than in a signal that
is flatter. COP data shows many steep spikes due to the quick reaction of the body’s postural
control system. These spikes appear to be steeper in less stable conditions. It is necessary,
however, to complete calculations to quantify the apparent increase in velocity. The changing
velocity of a signal can be determined with a first derivative and is estimated using the following

equation:

N x(+1)-x(@)
v = t(i+1)—t (i) (3-3)

Where x is the COP signal, t is the time vector, and i is the index equal to the length of
the signal. This slope equation gives the rate of change of the signal, providing knowledge about

how quickly the body is swaying while maintaining balance.
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Velocity was calculated for all COP signals between every two points. This created a new

signal with a length equal to the original COP signal. The data in the new velocity signal was

averaged together to create a single value representing the average velocity for each trial,

respectively. This average represented the typical oscillation speed of the given trial.

3.2.4.4.  Power Spectral Density

Power spectral density (PSD) provides information about the frequencies that exist within

a signal. More specifically, it gives a representation of how much of a signal exists at each

frequency. For example, the PSD of a 2 Hz sine wave is shown in Figure 3.7. Here, a large spike

is shown only at 2 Hz, as that is the only frequency that exists in the signal.

PSD of 2 Mz sine wave
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Figure 3.7. Power spectral density of a 2 Hz sine wave

Comparatively, Figure 3.8 shows the PSD of the same 2 Hz sine wave added to a 5 Hz

cosine wave. Here, spikes are seen at both 2 Hz and 5 Hz, with the same amplitude, because the

signal is made up of equal parts of both frequencies.
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PSD of 2 Hz sine wave plus 5 Hz cosine wave
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Figure 3.8. Power spectral density of a 2 Hz sine wave added to a 5 Hz cosine wave
PSD is defined as follows:
Sex(@) = [2 Rex(D)e /T do (3.6)
Where R, () is the autocorrelation and is defined as follows:

R,.(7) = Ti [0 x () * x(t + 7)dt (3.7)

Where the signal in question is a finite length, real valued signal, x(t), from 0 <t < T, and

where T is some amount of lag.

Auto-power, or the PSD of an individual signal, was determined for the velocity signal of
all COP data. In order to do this, the Python NumPy tool correlate was used to calculate the

autocorrelation of the signal. This was followed by the NumPy tool ffi.fft to complete the
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necessary Fourier transform to obtain the PSD. A summation of all frequency content in a signal

was performed to obtain a metric of total power that could be compared between trials.

In addition to using autocorrelation as a part of the PSD calculation, it was also used on
its own with all COP data. Autocorrelation provides information about how strongly a signal is
related to itself at different amounts of lag. This autocorrelation was compared to the cross-
correlation between COP and COM signals of the same direction. Like autocorrelation, cross-
correlation provides information about similarity, but it provides information about how similar
one signal is to another signal, as opposed to the same signal, at different amounts of lag. The
comparison of autocorrelation of COP to cross-correlation between COP and COM shows how
similar the COP and COM signals are to one another. If the autocorrelation of the COP signal
looks very similar to the cross-correlation between the COP and COM signals, then it is clear
that the signals themselves look similar at all times. Cross-correlation was performed using the

same NumPy correlate tool as autocorrelation and is defined as follows:
T
Ry (1) = Ti J,°x(®) * y(t + T)dt (3.8)

3.2.4.5.  Regression

Regression is a tool used to estimate the relationship between a signal and the time over

which is was recorded. It is defined as follows:
y = Bo+ Bix + Box? 4+ P3x3 + -+ Bpx + € (3.9)

Where the betas are the coefficients for the nth powers of the independent variable, x, and

epsilon is the error in the regression. This is often calculated in matrix form as shown below:
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V1 1 % xf . xM1Bo N
Y2 1 x, x2 .. x5 &1
Ys|=|1 x5 x% .. xP|[Bz|*]% (3.10)
In 1 x, x2 .. xPlBmd ten

This was calculated using the LinearRegression and PolynomialFeatures tools from the
scikit-learn machine learning library for python. This was done to create a baseline estimate for
what different stability conditions can be expected to look like, similar to the regression line

shown in Figure 3.9.
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Figure 3.9. Polynomial regression example, adapted from [61]

In order to create regression predictions, the trials from each respective stability condition
were averaged among all subjects to obtain one signal for each condition. This was done by
taking the average value for each index position. For example, the average was taken of all first
data points for all trials of the EOFT condition, and so on. Then, regression was calculated for

the resulting average signal. This provided important information, such as what a smooth signal
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approximate of that average would look like and where the boundaries were for a 95 percent
prediction band. Additionally, an R? value of the regression describes how much of the signal
was able to be approximated by the calculation. This can provide supporting evidence for

approximate entropy, as it is another way to estimate the uncertainty in a signal.
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Appendix A. Figures

Raw COP data in AP direction for Raw COP data In ML direction for
ECFT trial ECFT trial
m |
870 -
255
“s p
£ f
= 248 = B804
g' g
g 2404 o 835
S s §
- h o
4 £ 630
4 2% i
845 -
225+
w 4
220
o s 10 15 20 % 3 0 H 10 15 20 %
Time {5} Tene (5)
Figure A.1. COP data for eyes closed, feet together trial
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Figure A.2. COP data for eyes open, feet tandem, dominant foot in back trial

98



flaw COP data in AP direction for Raw COP data in ML direction for

EOFTanF trial EQF TanDF tnal
)
05
0 4
= ~ £80-
. 3
§ g 75 4
20 4
g £
g Lamw
[ |
15 4
g g
104 865 4
5 10 15 20 25 30 ¢ 5 10 15 20 25 »
Tene (s} Time {s)
Figure A.3. COP data for eyes open, feet tandem, dominant foot in front trial
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Figure A.4. COP data for eyes closed, feet tandem, dominant foot in back trial
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Figure A.5. COM data for eyes closed, feet together trial
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Figure A.6. COM data for eyes open, feet tandem, dominant foot in back trial
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Figure A.7. COM data for eyes open, feet tandem, dominant foot in front trial
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Figure A.8. COM data for eyes closed, feet tandem, dominant foot in back trial
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Appendix B. Code

B.1. Correlation Calculations

T I
correlation.py

Written by: Natalie Tipton
Advisor: Dr. Samhita Rhodes

Created on: July 5, 2020
Description: Signal Processing of COM

and COP to obtain auto and cross
correlation for comparison.

HOH K B R RH R R R H KR

Last updated: July 29, 2020
A

# import packages

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import analysis_lib as an

from scipy.stats import pearsonr

# constants

fs_com = 120
fs_cop = 1200
t_com = np.arange(0, 30, 1 / fs_com)

np.arange(0, 30, 1 / fs_cop)

t_cop

B S S

if __name__ == "__main__":

# read in COP data
x_cop = pd.read_csv("x_cop.csv", index_col=False)
y_cop = pd.read_csv("y_cop.csv'", index_col=False)

# read in COM data

x_com = pd.read_csv("x_com.csv", index_col=False)
y_com = pd.read_csv("y_com.csv'", index_col=False)
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# create dictionaries and lists for x-axis data
corr_dict = {}

eoft = []
ecft = []
eoftandb
eoftandf
ecftandb
ecftandf

[]
[]
[]
[]

# cycle through each column in x file
for col in x_cop.columns:
# determine the subject and trial number for column

# determine subject and trial number of current data
number = int(col[10:12])
subject = int(col[2:4])

# turn column of df into a list
cop_sig = x_coplcoll.to_list()
com_sig = x_com[col].to_list()

# create time vector for correlation signal
n_com = len(com_sig)
t_corr = np.arange(-n_com / fs_com, n_com / fs_com - 1 / fs_com, 1 / fs_com)

# resample COP data to match fs of COM

cop_sig_resample = []

for i in range(@, n_com):
cop_sig_resample.append(cop_sig[i * 10])

# calculate pearson's correlation coefficient between COP and COM
corr, _ = pearsonr(cop_sig_resample, com_sig)

# calculate autocorrelation of COP
auto_corr = np.correlate(cop_sig_resample, cop_sig_resample, mode="full")

# calculate cross correlation between COP and COM
cross_corr = np.correlate(cop_sig_resample, com_sig, mode="full")

# split up pearson's coefficients by condition
if number < 7:
eoft.append(corr)
elif 6 < number < 12:
ecft.append(corr)
elif 11 < number < 17:
eoftandb.append(corr)
elif 16 < number < 22:
ecftandb.append(corr)
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elif 21 < number < 27:
eoftandf.append(corr)

elif 26 < number < 32:
ecftandf.append(corr)

# set values to keys of each condition in dictionary for pearsons
corr_dict["EOFT"] = eoft
corr_dict["ECFT"] = ecft

corr_dict["EOFTanDB"] = eoftandb
corr_dict["ECFTanDB"] = ecftandb
corr_dict["EOFTanDF"] = eoftandf
corr_dict["ECFTanDF"] = ecftandf

# save pearson's coefficients in dataframe format to a .csv file
corr_df = pd.DataFrame(corr_dict, columns=corr_dict.keys())
corr_df.to_csv("x_correlations.csv")

# repeat above for the y-axis data

B.2. Entropy Calculations
e e e e e e e e e s e s e e e e e e e e

entropy.py

Written by: Natalie Tipton
Advisor: Dr. Samhita Rhodes

Created on: May 6, 2020

#
#
#
#
#
#
#
# Description: Compute approximate entropy
# for all files in x and y and save them
# in one .csv file for all x and another
# for ally

#
#

Last updated: July 29, 2020
A

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import skimage

from tqdm import tqdm

from joblib import Parallel, delayed
import multiprocessing

import analysis_lib as an
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import os

# define root folder for data
ROOT = f"{os.environ.get('HOME')}/Code/center_of_pressure/data"

# constants
fs_cop = 1200
t_cop = np.arange(0, 30, 1 / fs_cop)

B S S

if __name__ == "__main__":

# determine all subdirectories in root directory

folders = [x[0] for x in os.walk(R0OOT)]

# remove the root directory from folders

folders. remove(ROOT)

# find all file names in the subdirectories

files = [
(os.path.join(ROOT, folder), os.listdir(os.path.join(ROOT, folder)))
for folder in folders

# create a dictionary showing what filenames are within each folder
dirs = {}
for folder_name, file_list in files:
# remove irrelevant file names
if ".DS_Store" in file_list:
file_list.remove(".DS_Store")
dirs[folder_name]l = file_list

# create lists to hold ApEn results for every file
ent_x_dict = {}
ent_y dict = {}

# loop through all files in all subdirectories
for directory in dirs:
print(directory)
# loop through each file in the directory
for file in dirs[directory]:
# Determine which trial number it is
number = int(file[10:12])

# read data
df = pd.read_csv(os.path.join(directory, file), index_col=False)

# convert data from dataframe into a numpy list and obtain x and y signals
df = df.to_numpy()
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values = np.delete(df, 0, 1)
x_cop, y_cop = values.T

# calculate moving ApEn for x and y COP signals
ap_ent_x = an.approx_ent(x_cop, 1800, 900, 100, "X CoP")
ap_ent_y = an.approx_ent(y_cop, 1800, 900, 100, "Y CoP")

# save ApEn results into a dictionary under the key of the file name
ent_x_dict[f"{file}_x_ap_ent"] = ap_ent_x
ent_y_dict[f"{file}_y_ap_ent"] = ap_ent_y

# turn completed dictionaries into pandas dataframe
ent_x_df = pd.DataFrame(ent_x_dict, columns=ent_x_dict.keys())
ent_y_df = pd.DataFrame(ent_y_dict, columns=ent_y_dict.keys())
# save both dataframes in .csv files
ent_x_df.to_csv("x.csv")
ent_y_df.to_csv("y.csv")
B L L L et e Bt Bt e e

entropy_analysis.py

Written by: Natalie Tipton
Advisor: Dr. Samhita Rhodes

Created on: July 3, 2020
Description: Perform analysis on files

containing Approximate entropy results
for all files in x and y directions

HOHOHF K R R OB OBR OB K KR W

Last updated: July 29, 2020
A

# import packages

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import analysis_lib as an
import os

import statistics

# constants

fs_cop = 1200
t_cop = np.arange(0, 30, 1 / fs_cop)
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# create dictionaries to hold the trial entropy
# for each subject in both directions

sbol_x = {}
sb02_x = {}
sbo4_x = {}
sbo5_x = {}
sbo6_x = {}
sbo8_x = {}
sbol_y = {}
sbo2_y = {}
sbod_y = {}
sbo5_y = {}
sbo6_y = {}
sbo8_y = {}

B S A

if __name__ == "__main__":

# read files with x and y ApEn data
x_ent = pd.read_csv("x.csv", index_col=False)
y_ent = pd.read_csv("y.csv", index_col=False)

# cycle through each column in x file

for col in x_ent.columns:
# determine the subject and trial number for column
number = int(col[10:12])
subject = int(col[2:4])

# turn column of df into a list
sig = x_ent[col].to_list()

# create dictionary key for trial number and save data to it
# for each subject
if subject == 1:

sb@1_x[number] = sig
elif subject == 2:
sb@2_x[number] = sig
elif subject == 4:
sb@4_x[number] = sig
elif subject == 5:
sb@5_x[number] = sig
elif subject == 6:
sb@6_x[number] = sig
elif subject == 8:
sb@8_x[number] = sig
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# repeat above for y data

for col in y_ent.columns:
number = int(col[10:12])
subject = int(col[2:4])

sig = y_ent[col].to_list()

if subject ==
sb@1_y[number] = sig
elif subject == 2:
sb@2_y[number] = sig
elif subject == 4:
sb@4_y[number] = sig
elif subject == 5:
sb@5_y [number] = sig
elif subject == 6:
sb@6_y [number] = sig
elif subject == 8:
sb@8_y [number] = sig

HHABRHHHRAHHRHAHRHAARRA SubJect 1 HHHHHHHHHAHHHAHHRAHHR A

# create lists to save different stability conditions to
x_eoft_ent = []
x_ecft_ent = []
x_eoftandb_ent
x_ecftandb_ent
x_eoftandf_ent
x_ecftandf_ent

(]
(]
(]
(]

y_eoft_ent [
y_ecft_ent []
y_eoftandb_ent
y_ecftandb_ent
y_eoftandf_ent
y_ecftandf_ent

(]
(]
(]
(]

x_trial_ent = []
y_trial_ent [1]
trial_cond = []

# loop through all trials for subject 1 in x
for trial in sb@1_x.keys():
# save ApEn to proper stability condition list
if trial < 7:
trial_cond.append("EOFT")
x_eoft_ent.append(np.mean(sb01_x[triall))
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y_eoft_ent.append(np.mean(sb@1_y[triall))
x_trial_ent.append(np.mean(sb@1_x[triall))
y_trial_ent.append(np.mean(sb@1_y[triall))
elif 6 < trial < 12:
trial_cond.append("ECFT")
x_ecft_ent.append(np.mean(sb01_x[triall))
y_ecft_ent.append(np.mean(sb@1_y[triall))
x_trial_ent.append(np.mean(sb@1_x[triall))
y_trial_ent.append(np.mean(sb@1_y[triall))
elif 11 < trial < 17:
trial_cond.append("EOFTanDB")
x_eoftandb_ent.append(np.mean(sb@1_x[triall))
y_eoftandb_ent.append(np.mean(sb@l_y[triall))
x_trial_ent.append(np.mean(sb@1_x[triall))
y_trial_ent.append(np.mean(sb@1_y[triall))
elif 16 < trial < 22:
trial_cond.append("ECFTanDB")
x_ecftandb_ent.append(np.mean(sb@1_x[triall))
y_ecftandb_ent.append(np.mean(sb@l_y[triall))
x_trial_ent.append(np.mean(sb@1_x[triall))
y_trial_ent.append(np.mean(sb@1_yl[triall))
elif 21 < trial < 27:
trial_cond.append("EOFTanDF")
x_eoftandf_ent.append(np.mean(sb@1_x[triall))
y_eoftandf_ent.append(np.mean(sb@l_y[triall))
x_trial_ent.append(np.mean(sb@1_x[triall))
y_trial_ent.append(np.mean(sb@1_yl[triall))
elif 26 < trial < 32:
trial_cond.append("ECFTanDF")
x_ecftandf_ent.append(np.mean(sb@1_x[triall))
y_ecftandf_ent.append(np.mean(sb@l_y[triall))
x_trial_ent.append(np.mean(sb@1_x[triall))
y_trial_ent.append(np.mean(sb@1_y[triall))

(
(

# save x and y entropies by trial and condition to a .csv file

zipped = list(zip(x_trial_ent, y_trial_ent, trial_cond))

df_for_stats = pd.DataFrame(zipped, columns=["xEntropy", "yEntropy", "condition"])
df_for_stats.to_csv(f'"sbl_entropy_by_condition.csv")

# repeat above for remaining subjects
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B.3. Velocity Calculations
B T e Lt T
velocity.py

Written by: Natalie Tipton
Advisor: Dr. Samhita Rhodes

#

#

#

#

#

# Created on: June 10, 2020

#

# Description: Processing of the velocity
# of COP signals.
#

#

Last updated: July 29, 2020
T I

# import packages

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import analysis_lib as an
import os

import statistics

# define root folder for data
ROOT = f"{os.environ.get('HOME')}/Code/center_of_pressure/data"

# constants
fs_cop = 1200
t_cop = np.arange(0, 30, 1 / fs_cop)

B A

if __name__ == "__main__":

# determine all subdirectories in root directory

folders = [x[0] for x in os.walk(ROOT)]

# remove the root directory from folders

folders.remove(ROOT)

# find all file names in the subdirectories

files = [
(os.path.join(ROOT, folder), os.listdir(os.path.join(ROOT, folder)))
for folder in folders
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# create a dictionary showing what filenames are within each folder
dirs = {}
for folder_name, file_list in files:
# remove irrelevant file names
if ".DS_Store" in file_list:
file_list.remove(".DS_Store")
dirs[folder_namel = file_list

# loop through all files in all subdirectories
for directory in dirs:
print(directory)

# create lists to store vel and psd for x and y data
x_trial_vel = []
y_trial_vel = []
x_trial_pow = []
y_trial_pow [
trial_cond = []

# create lists for vel and PSD of all trial groups
vel_x_avgs_eotog = []
pow_x_tot_eotog = []
vel_y_avgs_eotog = []
pow_y_tot_eotog = []

vel_x_avgs_ectog = []
pow_x_tot_ectog = []
vel_y_avgs_ectog = []
pow_y_tot_ectog = []

vel_x_avgs_eodftan = []
pow_x_tot_eodftan = []
vel_y_avgs_eodftan = []
pow_y_tot_eodftan = []

vel_x_avgs_ecdftan = []
pow_x_tot_ecdftan = []
vel_y_avgs_ecdftan = []
pow_y_tot_ecdftan = []

vel_x_avgs_eodbtan = []
pow_x_tot_eodbtan = []
vel_y_avgs_eodbtan = []
pow_y_tot_eodbtan = []

vel_x_avgs_ecdbtan = []

pow_x_tot_ecdbtan = []
vel_y_avgs_ecdbtan = []
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pow_y_tot_ecdbtan = []

# loop through each file in the directory

for file in dirs[directory]:
# Determine which trial number and subject the file is
number = int(file[10:12])
subject = int(file[2:4])

# if an EOFT trial
if number < 7:
trial_cond.append("EOFT")
# read data
df = pd.read_csv(os.path.join(directory, file), index_col=False)

# convert data from dataframe into a numpy list
df = df.to_numpy()

values = np.delete(df, 0, 1)

x_cop, y_cop = values.T

# get the derivative of the x direction COP data
vel_x_cop = an.deriv(t_cop, x_cop)

# take the average of the first 10 data points from x velocity

# (too time expensive to average all points, and this is accurate)
vel_x_avgs_eotog.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))
x_trial_vel.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))

# calculate autocorrelation and then PSD of velocity of x COP
auto_vel_x_cop = np.correlate(vel_x_cop, vel_x_cop, mode="full")
Sxx_vel_cop = np.fft.fft(auto_vel_x_cop)

# sum up all of the x cop frequency content
pow_x_tot_eotog.append(sum(abs(Sxx_vel_cop)))
x_trial_pow.append(sum(abs(Sxx_vel_cop)))

# get the derivative of the y direction COP data
vel_y_cop = an.deriv(t_cop, y_cop)

# take the average of the first 10 data points from x velocity
vel_y_avgs_eotog.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))
y_trial_vel.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))

# calculate autocorrelation and the PSD of velocity of y COP
auto_vel_y_cop = np.correlate(vel_y_cop, vel_y_cop, mode="full")

Syy_vel_cop = np.fft.fft(auto_vel_y_cop)

# sum up all of the y cop frequency content
pow_y_tot_eotog.append(sum(abs(Syy_vel_cop)))

112



y_trial_pow.append(sum(abs(Syy_vel_cop)))

# if an ECFT trial: complete same steps as above
elif 6 < number < 12:
trial_cond.append("ECFT")
df = pd.read_csv(os.path.join(directory, file), index_col=False)

df = df.to_numpy()
values = np.delete(df, 0, 1)
x_cop, y_cop = values.T

vel_x_cop = an.deriv(t_cop, x_cop)
vel_x_avgs_ectog.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))
x_trial_vel.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))

auto_vel_x_cop = np.correlate(vel_x_cop, vel_x_cop, mode="full")
Sxx_vel_cop = np.fft.fft(auto_vel_x_cop)
pow_x_tot_ectog.append(sum(abs(Sxx_vel_cop)))
x_trial_pow.append(sum(abs(Sxx_vel_cop)))

vel_y_cop = an.deriv(t_cop, y_cop)
vel_y_avgs_ectog.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))
y_trial_vel.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))

auto_vel_y_cop = np.correlate(vel_y_cop, vel_y_cop, mode="full")
Syy_vel_cop = np.fft.fft(auto_vel_y_cop)
pow_y_tot_ectog.append(sum(abs(Syy_vel_cop)))
y_trial_pow.append(sum(abs(Syy_vel_cop)))

# if an EOFTanDB trial
elif 11 < number < 17:
trial_cond.append("EOFTanDB")
df = pd.read_csv(os.path.join(directory, file), index_col=False)

df = df.to_numpy()
values = np.delete(df, 0, 1)
x_cop, y_cop = values.T

vel_x_cop = an.deriv(t_cop, x_cop)
vel_x_avgs_eodbtan.append(
np.mean(sorted(vel_x_cop, reverse=True)[:10])

)

x_trial_vel.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))

auto_vel_x_cop = np.correlate(vel_x_cop, vel_x_cop, mode="full")
Sxx_vel_cop = np.fft.fft(auto_vel_x_cop)
pow_x_tot_eodbtan.append(sum(abs(Sxx_vel_cop)))
x_trial_pow.append(sum(abs(Sxx_vel_cop)))
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vel_y_cop = an.deriv(t_cop, y_cop)
vel_y_avgs_eodbtan.append(

np.mean(sorted(vel_y_cop, reverse=True)[:10])
)

y_trial_vel.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))

auto_vel_y_cop = np.correlate(vel_y_cop, vel_y_cop, mode="full")
Syy_vel_cop = np.fft.fft(auto_vel_y_cop)
pow_y_tot_eodbtan.append(sum(abs(Syy_vel_cop)))
y_trial_pow.append(sum(abs(Syy_vel_cop)))

# if an ECFTanDB trial
elif 16 < number < 22:
trial_cond.append("ECFTanDB")
df = pd.read_csv(os.path.join(directory, file), index_col=False)

df = df.to_numpy()
values = np.delete(df, 0, 1)
x_cop, y_cop = values.T

vel_x_cop = an.deriv(t_cop, x_cop)
vel_x_avgs_ecdbtan.append(

np.mean(sorted(vel_x_cop, reverse=True)[:10])
)

x_trial_vel.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))

auto_vel_x_cop = np.correlate(vel_x_cop, vel_x_cop, mode="full")
Sxx_vel_cop = np.fft.fft(auto_vel_x_cop)
pow_x_tot_ecdbtan.append(sum(abs(Sxx_vel_cop)))
x_trial_pow.append(sum(abs(Sxx_vel_cop)))

vel_y_cop = an.deriv(t_cop, y_cop)
vel_y_avgs_ecdbtan.append(

np.mean(sorted(vel_y_cop, reverse=True)[:10])
)

y_trial_vel.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))

auto_vel_y_cop = np.correlate(vel_y_cop, vel_y_cop, mode="full")
Syy_vel_cop = np.fft.fft(auto_vel_y_cop)
pow_y_tot_ecdbtan.append(sum(abs(Syy_vel_cop)))
y_trial_pow.append(sum(abs(Syy_vel_cop)))

# if an EOFTanDF trial
elif 21 < number < 27:
trial_cond.append("EOFTanDF")
df = pd.read_csv(os.path.join(directory, file), index_col=False)
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df = df.to_numpy()
values = np.delete(df, 0, 1)
x_cop, y_cop = values.T

vel_x_cop = an.deriv(t_cop, x_cop)
vel_x_avgs_eodftan.append(

np.mean(sorted(vel_x_cop, reverse=True)[:10])
)

x_trial_vel.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))

auto_vel_x_cop = np.correlate(vel_x_cop, vel_x_cop, mode="full")
Sxx_vel_cop = np.fft.fft(auto_vel_x_cop)
pow_x_tot_eodftan.append(sum(abs(Sxx_vel_cop)))
x_trial_pow.append(sum(abs(Sxx_vel_cop)))

vel_y_cop = an.deriv(t_cop, y_cop)
vel_y_avgs_eodftan.append(

np.mean(sorted(vel_y_cop, reverse=True)[:10])
)

y_trial_vel.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))

auto_vel_y_cop = np.correlate(vel_y_cop, vel_y_cop, mode="full")
Syy_vel_cop = np.fft.fft(auto_vel_y_cop)
pow_y_tot_eodftan.append(sum(abs(Syy_vel_cop)))
y_trial_pow.append(sum(abs(Syy_vel_cop)))

# 1if an ECFTanDF trial
elif 26 < number < 32:
trial_cond.append("ECFTanDF")
df = pd.read_csv(os.path.join(directory, file), index_col=False)

df = df.to_numpy()
values = np.delete(df, 0, 1)
x_cop, y_cop = values.T

vel_x_cop = an.deriv(t_cop, x_cop)
vel_x_avgs_ecdftan.append(

np.mean(sorted(vel_x_cop, reverse=True)[:10])
)

x_trial_vel.append(np.mean(sorted(vel_x_cop, reverse=True)[:10]))

auto_vel_x_cop = np.correlate(vel_x_cop, vel_x_cop, mode="full")
Sxx_vel_cop = np.fft.fft(auto_vel_x_cop)
pow_x_tot_ecdftan.append(sum(abs(Sxx_vel_cop)))
x_trial_pow.append(sum(abs(Sxx_vel_cop)))

vel_y_cop = an.deriv(t_cop, y_cop)
vel_y_avgs_ecdftan.append(
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B4.

np.mean(sorted(vel_y_cop, reverse=True)[:10])
)

y_trial_vel.append(np.mean(sorted(vel_y_cop, reverse=True)[:10]))

auto_vel_y_cop = np.correlate(vel_y_cop, vel_y_cop, mode="full")
Syy_vel_cop = np.fft.fft(auto_vel_y_cop)
pow_y_tot_ecdftan.append(sum(abs(Syy_vel_cop)))
y_trial_pow.append(sum(abs(Syy_vel_cop)))

# save velocity data from all conditions in both directions to a .csv
zipped = list(
zip(x_trial_vel, y_trial_vel, x_trial_pow, y_trial_pow, trial_cond)
)
df_for_stats = pd.DataFrame(
zipped, columns=["xVelocity", "yVelocity", "xPower", "yPower","condition"]
)

df_for_stats.to_csv(f"sb{directory[-1]}_velocity_ by _condition.csv")

Regression Calculations

B S

HOH K R OH K R R R R H

Last

regr.py

Written by: Natalie Tipton
Advisor: Dr. Samhita Rhodes

Created on: May 6, 2020

Description: Performs least squares polynomial
regression on data to obtain a baseline model

updated: July 29, 2020

B S S

# import packages

import
import
import
import
import
import
import

operator

numpy as np

pandas as pd
matplotlib.pyplot as plt
matplotlib

0s

analysis_1lib as an

from sklearn.linear_model import LinearRegression
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from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures
from scipy.stats import norm

# define root folder for data
ROOT = f"{os.environ.get('HOME')}/Code/center_of_pressure/data"

# constants
fs_cop = 1200
t_cop = np.arange(0, 30, 1 / fs_cop)

# create lists for all data to go into
all_x_data = []
all_y_data = []

B S A

if __name__ == "__main__":

# determine all subdirectories in root directory

folders = [x[0] for x in os.walk(ROOT)]

# remove the root directory from folders

folders.remove(ROOT)

# find all file names in the subdirectories

files = [
(os.path.join(ROOT, folder), os.listdir(os.path.join(ROOT, folder)))
for folder in folders

# create a dictionary showing what filenames are within each folder
dirs = {}
for folder_name, file_list in files:
# remove irrelevant file names
if ".DS_Store" in file_list:
file_list.remove(".DS_Store")
dirs[folder_namel = file_list

# loop through all files in all subdirectories
for directory in dirs:

for file in dirs[directory]:
# determine trial number
number = int(file[10:12])

# change if statement to create groupings of different conditions

# number < 7 = EOFT, 6 < number < 12 = ECFT, 11 < number < 17 = EOFTanDB
# 16 < number < 22 = ECFTanDB, 21 < number < 27 = EOFTanDF,
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# 26 < number < 32 = ECFTanDF, number < 32 = all conditions
if number < 32:
# read COP data
df = pd.read_csv(os.path.join(directory, file), index_col=False)

# convert to np array and obtain x and y axis data
df = df.to_numpy()

values = np.delete(df, 0, 1)

Xaxis, Yaxis = values.T

# turn data into delta values, showing deviation from start
Xaxis = np.subtract(Xaxis, Xaxis[0])
Yaxis = np.subtract(Yaxis, Yaxis[0])

# save data from all files in condition range to a list
all_x_data.append(Xaxis)
all_y_data.append(Yaxis)

# turn list into array
all_x_data = np.array(all_x_data)
all_y_data = np.array(all_y_data)

# find average signal from all data in condition range
avg_x_data = np.mean(all_x_data, axis=0)
avg_y_data = np.mean(all_y_data, axis=0)

avg_x_data = avg_x_datal:, np.newaxis]
avg_y_data = avg_y_datal:, np.newaxis]
t_cop = t_copl:, np.newaxis]

# calculate regression models for AP and ML directions and plot
plt.figure()

poly(t_cop, avg_x_data, 121, "AP")

poly(t_cop, avg_y_data, 122, "ML")

plt.show()
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B.5. Function Library
L T e Lt T
analysis_1lib.py

Written by: Natalie Tipton
Advisor: Dr. Samhita Rhodes

Created on: May 6, 2020

Description: Library of functions for use in
code relating to thesis research

HOH K B R R R R R R H

Last updated: July 29, 2020
T I

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import numpy as np

import pandas as pd

from sklearn import preprocessing

import skimage

from tqdm import tqdm

from joblib import Parallel, delayed

import multiprocessing

from scipy import signal

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures
from scipy.stats import norm

# reads CoP data in from .csv files for data with feet together, one force plate
# returns: cx = CoP x position (AP), cy = CoP y position (ML)
# user specifies:
# header = which row the data starts on (starting at @, not 1 like the sheet)
# usecols = names of the column headers that are to be included
# nrows = number of data points to be read in
#  rows_skip = the number of any rows to not be included (starting at 0)
def read_data_onefp(filepath, row_start, cols, num_data, rows_skip):
data = pd.read_csv(
filepath,
header=row_start,
usecols=cols,
nrows=num_data,
dtype={"Cx": np.float64, "Cy": np.float64},
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HOHOH K R OB R R R

def

# co

cX =
cy =

retu

head
usec

skiprows=rows_skip,

nvert data frame into lists
data["Cx"].values.tolist()
data["Cy"].values.tolist()

rn cx, cy, data["Cx"]

reads CoP data in from .csv files for feet tandem, two force plates
combines CoP positions from both force plates into 1 resultant CoP
returns: cx_combined = resultant CoP x position (AP),

cy_combined = resultant CoP y position (ML)

user specifies:

er = which row the data starts on (starting at @, not 1 like the sheet)
ols = names of the column headers that are to be included

nrows = number of data points to be read in

rows
read
data

# co
fz =
CX =
cy =
fz_1
cx_1
cy_1

cX_cC
cy_c

_skip = the number of any rows to not be included (starting at 0)
_data_twofp(filepath, row_start, cols, num_data, rows_skip):

= pd.read_csv(
filepath,
header=row_start,
usecols=["Fz", "Cx", "Cy", "Fz.1", "Cx.1", "Cy.1"],
nrows=36000,
dtype={
"Fz": np.float64,
"Cx": np.float64,
"Cy": np.float64,
"Fz.1": np.float64,
"Cx.1": np.float64,
"Cy.1": np.float64,
I

skiprows=[4],

nvert data frame into lists
datal["Fz"].values.tolist()
data["Cx"].values.tolist()
data["Cy"]l.values.tolist()
datal["Fz.1"].values.tolist()
data["Cx.1"].values.tolist()
data["Cy.1"].values.tolist()

(]
(]

ombined
ombined

# combine CoP from two force plates into one resultant CoP
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# combined(x,y)=COP1(x,y)+(F1(z)/F1(z)+F2(z))+COP2(x,y)+(F2(z)/F1(z)+F2(z))
for point in range(len(cx)):
cx_combined.append(
cx[point] * fz[point] / (fzlpoint]l + fz_1[point])
+ cx_1[point] *x fz_1[point] / (fz[point] + fz_1[point])

cy_combined.append(
cylpoint] * fz[point]l / (fzlpoint] + fz_1[point])
+ cy_1l[point] * fz_1[point] / (fz[point] + fz_1[point])

return cx_combined, cy_combined

# reads CoM data in from .csv files
# returns: x = CoM x position (AP), y = CoM y position (ML), z = CoM z position
# user specifies:

header = which row the data starts on (starting at @, not 1 like the sheet)
usecols = names of the column headers that are to be included
nrows = number of data points to be read in
rows_skip = the number of any rows to not be included (starting at 0)
read_data_com(filepath, row_start, cols, num_data, rows_skip):
data = pd.read_csv(

filepath,

header=row_start,

usecols=cols,

nrows=num_data,

dtype={"Cx": np.float64, "Cy": np.float64},

skiprows=rows_skip,

convert data frame into lists
data["X"].values.tolist()
data["Y"].values.tolist()
data["Z"].values.tolist()

N < X #
Il

return x, vy, z

# standardizes the data given using the equation:
# standard[n] = (dataln] - mean[datal) / standard deviation[data]

def

standardize(data):
avg = np.mean(data)
sd = np.std(data)

standard = []
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for i in range(0, len(data)):
standard.append((datal[il - avg) / sd)

return standard

# creates a plot using matplotlib.pyplot
# user specifies:
# x = data to be plotted on x axis
y = data to be plotted on y axis
xlabel = string for labeling x axis
ylabel = string for labeling y axis
title = string to titling plot
x1lim = min and max limits for the x axis (use None for no lim)
ylim = min and max limits for the y axis (use None for no lim)
def plot(x, y, xlabel, ylabel, title, xlim, ylim):
plt.figure()
plt.plot(x, y)
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.xlim(xlim)
plt.ylim(ylim)
plt.show()

H R OBF K R R

# calculates the point by point derivative between two lists
# Inputs:
# x = independent variable
# y = dependent variable
def deriv(x, y):

der = []

for i in range(0, len(y) - 1):

der.append((y[i + 1] - y[i]) / (x[i + 1] - x[i]l))

return der

# adapted from https://en.wikipedia.org/wiki/Approximate_entropy
# returns: the approximate entropy of a data set
# User inputs:
# U = data set
# m = length of compared runs
# r = filter value
def ApEn(U, m, r) —> float:

def _maxdist(x_i, x_j):

return max([abs(ua - va) for ua, va in zip(x_i, x_j)1)
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def _phi(m):
x = [[U[j] for j in range(i, i + m - 1 + 1)] for i in range(N - m + 1)]
c=1
len([1 for x_j in x if _maxdist(x_i, x_j) <=rl) / (N - m + 1.0)
for x_i in x

return (N — m + 1.0) sk (-1) * sum(np.log(C))
N = len(U)

return abs(_phi(m + 1) - _phi(m))

# collects approximate entroy into a list from each window

# Inputs:

# ent_list = entrpoy value

# x = list to append values to

def collect_approx_entropy(ent_list, x):
ent_list.append(x)

# prepares data for moving approximate entropy calculation

# Inputs:

# x = data

# win_size = size of windows for moving calculation

# overlap = amount of overlap in windows

# mult = gain increase for data to exacerbate small differences
# name = data descriptor for plot laleling

def approx_ent(x, win_size, overlap, mult, name) —> list:
# increase magnitude of signal for more sensitivity in entropy
x_multiplied = np.multiply(x, mult)

# create overlapping windows

x_array = np.asarray(x_multiplied)

x_overlap = skimage.util.view_as_windows(x_array, win_size, step=overlap)
rows = x_overlap.shape[0]

approx_entropy = []
# calculate moving approximate entropy in multiple threads to speed up process
Parallel(n_jobs=multiprocessing.cpu_count(), require="sharedmem") (

delayed(collect_approx_entropy) (approx_entropy, (ApEn(x_overlaplrowl, 2, 10)))
for row in tgdm(range(@, rows))

return approx_entropy
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# function to obtain filter coefficients for butterworth, 4th order, 6 hz lowpass
# Inputs:
# cutoff = cutoff frequency
# fs = sampling frequency of data to be filtered
# order = order of filter
# OQutputs:
# a,b = filter coefficients
def butter_lowpass(cutoff, fs, order=4):
normal_cutoff = float(cutoff) / (fs / 2)
b, a = signal.butter(order, normal_cutoff, btype="lowpass", analog=False)
return b, a

# filters data using filter coefficients from butter_lowpass
# Inputs:
# data = data to be filtered
# cutoff_freq = lowpass cutoff frequency
# fs = sampling frequency of data passed
# order = order of filter
# Output:
# y = filtered data
def butter_lowpass_filter(data, cutoff_freq, fs, order=4):
b, a = butter_lowpass(cutoff_freq, fs, order=order)
y = signal.filtfilt(b, a, data)
return y

# https://github.com/NathanMaton/prediction_intervals/blob/master/sklearn_prediction_
# interval_extension.ipynb
# returns a prediction interval for a linear regression prediction
# Inputs:
# prediction = single prediction
# y_test = test data that is being used for the regression
# test_predictions = entire list of regression predictions
# pi = confidence intervale
# OQutputs:
# lower = a single value of the lower bound
# upper = a single value of the upper bound
def get_prediction_interval(prediction, y_test, test_predictions, pi=0.95):
# get standard deviation of y_test
sum_errs = np.sum((y_test - test_predictions) *x 2)
stdev = np.sqrt(1 / (len(y_test) - 2) % sum_errs)

# get interval from standard deviation
one_minus_pi = 1 - pi

ppf_lookup = 1 - (one_minus_pi / 2)
z_score = norm.ppT(ppf_lookup)
interval = z_score x stdev
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# generate prediction interval lower and upper bound
lower, upper = prediction - interval, prediction + interval

return lower, upper

# calculates the regression and plots the curve with original
# signal and 95% prediction intervals

# Inputs:

# X = x-axis data for regression

# Y = y-axis data for regression

# subplt = which subplot to plot for plotting both directions
# dir = direction (AP/ML) of current data

def poly(X, Y, subplt, dir):

# determine polynomial peatures
polynomial_features = PolynomialFeatures(degree=9)
X_polynomial = polynomial_features.fit_transform(X)

# create regression model and fit to the polynomial features
model = LinearRegression()
model. fit(X_polynomial, Y)

# create a regression curve based on model
y_polynomial_predictions = model.predict(X_polynomial)

# calculte r squared value
r2 = r2_score(Y, y_polynomial_predictions)

# create upper and lower intervals
X_upper = []
X_lower = []

# calculate upper and lower intervals

for prediction in y_polynomial_predictions:
lower, upper = get_prediction_interval(prediction, Y,y_polynomial_predictions)
X_upper.append(upper)
X_lower.append(lower)

# create a label to show the r squared value on plot
label = r"$R*{2}$ = " + str(round(r2, 3))

# plot the original signal, regression curve, and prediction intervals
plt.subplot(subplt)

plt.plot(X, Y)

sort_axis = operator.itemgetter(0)

sorted_zip = sorted(zip(X, y_polynomial_predictions), key=sort_axis)
X, y_polynomial_predictions = zip(xsorted_zip)
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plt.plot(x, y_polynomial_predictions, color="m")

plt.plot(x, X_upper, color="r")

plt.plot(x, X_lower, color="r")

plt.xlabel("Time (s)")

plt.ylabel("COP Approximation (mm from starting location)")
plt.title(f"Regression model for all trials in the {dir} direction\n{label}")
plt.legend(["Average Signal", "Model", "95% prediction interval"])
plt.ylim([-10, 61)
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