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Abstract

The emergence of Ebola in West Africa is of worldwide public health concern. Successful miti-
gation of epidemics requires coordinated, well-planned intervention strategies that are specific
to the pathogen, transmission modality, population, and available resources. Modeling and sim-
ulation in the field of computational epidemiology provides predictions of expected outcomes
that are used by public policy planners in setting response strategies.

Developing up to date models of population structures, daily activities, and movement has
proven challenging for developing countries due to limited governmental resources. Recent
collaborations (in 2012 and 2014) with telecom providers have given public health researchers
access to Big Data needed to build high-fidelity models. Researchers now have access to billions
of anonymized, detailed call data records (CDR) of mobile devices for several West African
countries. In addition to official census records, these CDR datasets provide insights into the
actual population locations, densities, movement, travel patterns, and migration in hard to
reach areas. These datasets allow for the construction of population, activity, and movement
models. For the first time, these models provide computational support of health related
decision making in these developing areas (via simulation-based studies).

New models, datasets, and simulation software were produced to assist in mitigating the
continuing outbreak of Ebola. Existing models of disease characteristics, propagation, and
progression were updated for the current circulating strain of Ebola. The simulation process
required the interactions of multi-scale models, including viral loads (at the cellular level),
disease progression (at the individual person level), disease propagation (at the workplace and
family level), societal changes in migration and travel movements (at the population level),
and mitigating interventions (at the abstract governmental policy level). The predictive results
from this system were validated against results from the CDC’s high-level predictions.
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1 Introduction

The cost of infectious diseases has a significant negative impact on the economy, health, and
well-being of countries. The cost of succumbing to and recovering from infectious diseases
often places the highest burden on poor and disadvantaged citizens. These individuals are
unable to acquire sufficient preventative, diagnostic, and treatment services. In addition, the
effects of an infection are generally more severe in high-risk groups, e.g., pregnant, HIV-positive,
and the elderly. Thus, it is especially important to maximize the use of public resources and
optimize policies related to health. In West Africa, communicable diseases (e.g., Ebola and
meningitis), vector-borne diseases (e.g., malaria and yellow fever), and parasitic diseases (e.g.,
Schistosomiasis) have a significant impact on health and the economy. Senegal in particular
is at high-risk for infectious diseases and epidemics. Medical resources (such as physicians
and pharmaceutical treatments) and infrastructure (hospitals and clinics) are limited in many
developing areas despite the prevalence of infectious diseases. Thus, it is not straightforward to
efficiently prevent and respond to epidemics or eradicate diseases. Proper planning is required
to best allocate and use available resources, especially if an epidemic threatens to exhaust
resource availability. Governmental policies are required for activities such as closing borders,
closing schools, stopping commerce, conducting surveillance, outreaching through mass media,
distributing pharmaceutical treatments, restricting travel, performing quarantine, and isolating.
However, it is not known a priori which optimal combination of mitigation strategies will best
prevent or end an epidemic. Simulation results provide a computational prediction for how a
given disease will spread in a given population and scenario. Conducting a simulation study
allows governmental officials to set policy based on predicted future events, infections, and cost.

Several simulation software tools have been developed to simulate the spread of diseases
[2, 3, 7, 12]. These computational epidemiology tools have been used extensively in setting
public health policies for several national governments and aid organizations. The tools were
designed to handle a range of diseases including avian flu, pertussis, smallpox, and malaria.
However, the current generation of software tools must be modified to accurately simulate the
spread of Ebola. These tools have been used to set policies in several developed countries with
population models built on government census records and individual activity questionnaires.
The tools require models for populations, social networks, individual behavior, movement, and
diseases. However, these models have not been developed or parameterized to work well with
developing countries and the Ebola virus. Many assumptions and population models produced
for developed countries break down when applied to the spread of diseases in West Africa.
There are differences in family and household sizes, age structures, school sizes and attendees,
lifestyles, social networks, movement models, migration, seasonal shifts, climate, transportation
infrastructure, and the locations and availability of healthcare resources. Limited government
resources and difficulty of travel in certain areas have prevented some countries from producing
censuses and activity models. With the scarcity of information regarding remote areas, it has
not historically been possible to construct accurate models regarding health in these regions.

Fortunately, mobile phones are ubiquitous in developing countries. Anonymous call detail
records (CDR) provide metadata regarding the time and location a person sends or receives
a call or SMS text message. With anonymized CDR datasets, researchers are able to track
relative population levels in each area of the country, individual movements, seasonal hotspots,
population shifts, and migration. With these datasets, data mining as applied to the frequency
and timing of calls and texts make it possible to identify population trends. With recently made
available CDR datasets, population and movement models can now be produced that enable
more accurate simulations of epidemics in these areas. Population models of Ivory Coast and
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Senegal now contain fine-grained detail on population travel, daily movement, and interactions.
Governmental public health officials may utilize the newly developed models and modified

simulation software to set public policy in West Africa. This stochastic approach has been
benchmarked and calibrated against predictions from analytical CDC models.

2 Computational Epidemiology and Policy

Stochastic models are widely used in public health research, predicting a variety of scenarios
from propagation (e.g., HIV spread in prisons [13]) to treatment (e.g., optimizing Emergency
Department organization [4]). Modeling and simulation software provides healthcare planners
with the ability to predict the results of scenarios. These scenarios consist of a hypothetical
situation consisting of hundreds of variables. The population for the simulation may consist of a
village, arrondissement, department, nation, or set of countries. Research groups have produced
software applications for computational experimentation related to the spread of diseases. These
tools typically require population models, activity models, and disease models. Population
models include individuals’ demographics, population age structures, and population densities.
Activity models describe travel patterns, daily schedules, and interactions between individuals.
Disease models required for these simulation applications have been developed during research
concerning the spread of diseases in other countries. However, disease models for Ebola have not
gained widespread adoption and use in computational epidemiology due to the slow emergence
of concrete facts regarding the current outbreak. With these models and datasets, a software
application may predict the diffusion of Ebola throughout the population. Stochastic software
models are used to predict the probabilistic spread between individual hosts.

Public health mitigation strategies play a major role in preventing an epidemic and facil-
itating its eradication. Experimental studies in the field of computational epidemiology are
conducted by executing the simulation software using the underlying models and datasets in
order to compare the results of thousands of scenarios. These results then lead to best practices.

3 Model Creation for Stochastic Simulations

The field of computational epidemiology makes use of computing to improve population health
by informing public policy. Distributed, stochastic simulation software was developed to forecast
the spread of Ebola in West Africa given a potential scenario. The software requires models of
the Ebola virus, West Africa populations, mobility, mixing patterns, and government policy.

3.1 Mobile Datasets

Access to CDR data provided by Orange Telecom and the Senegal and Ivory Coast govern-
ments through the D4D Challenge allowed the development of population models previously
unavailable to stochastic, agent-based simulation platforms. Active user ids, defined as having
at least one CDR record, were used to provide details of human mobility and locations based
on arrondissements and antennas. The antenna-based datasets consist of 25 two-week dura-
tion records each with 300,000 individuals and overlap of some individuals between records.
Population modeling and knowledge discovery based on these datasets makes use of the latent
information contained therein. The continuous monitoring and geospatial details provide higher
resolution data than previously available in census records. Constructing population models
enables research in health and disease propagation and provides the basis for stochastic models.
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In order to utilize the 1,204,451,385 datapoints in the fine-grained dataset, multiple programs
were developed to mine CDRs and identified useful information. User ids and timestamps
were recorded to determine the number of calls per user at a sampling site. A site may be a
geographical region (prefecture or arrondissement) or antenna. The average total calls/texts
by a user for the entire year was 3,764, or roughly 10 calls/texts per user per day. From these
records, a user’s home and work locations were matched with antenna locations based on time
of day. To ascertain human mobility data, the CDRs were mined to track movements between
antennas in chronological order by a user id. This was accomplished by ordering the sequential
records of a user’s location by timestamp and then determining the time periods when they
were observed moving to a different antenna location. Subsequent sites were only recorded if the
antenna location was different from the previously recorded location. In order to determine the
contribution of a particular population to overall population movement in a macro view, ‘hops’
were defined as a user traveling to a new antenna location. Hop width is the accumulation of
the movement for the whole population between each pair of sites. In the following mobility
figures, each time a user travels to a different site, the thickness of the line between the previous
and current sites increases, indicating increased user movement between the sites. This process
produced D4D-informed population and mobility models, discussed in the following sections.

3.2 D4D-Informed Synthetic Populations

When synthesizing Senegal’s population, the ratio of the percentage of mobile users per geo-
graphic antenna location, derived from CDR dataset, was used to scale the spatial population
density for over 1,600 antenna locations. By multiplying Senegalese census regional population
data by this ratio, the population was distributed with fine-grained detail to each antenna. The
population’s age distribution was applied to each area and antenna range. Using the cumulative
ratios of age distribution, ages were assigned to each individual. Household size distributions
were constructed as an array using Senegalese household size data [10]. Using the cumulative
ratios of household sizes, the size of each household was probabilistically assigned. In construct-
ing the set of individuals occupying a household, an adult of working age was first added to the
household (either aged 15-24 or 25-64), with associated probabilities based on population age
distribution. If the household size was larger than one, the other individuals were randomly
assigned according to age distribution probabilities of the population. Figure 1 provides an
overview of population modeling given the antenna-based sampling locations. This process led
to the construction of a synthetic population model that contains an individual agent for each
resident, placed in locations and family units statistically aligned with observed mobile records.

3.3 D4D-Informed Mobility and Activity Modeling

The population, worker-flow, and employment models specify where every individual lives,
works, and travels based on their observed movement. Each individual’s home and work loca-
tions were calculated based on the most frequently used antenna between the times of 7:00pm-
7:00am (home) and 7:00am-7:00pm (work). Home locations are displayed in Figure 1 and align
with census estimates in each geographic region. A similar work location for each individual
was assigned from CDR and employment data. The employment data, such as working age
population and percentage of employment, is used to model the percent of employed working
age individuals who travel to non-home locations for work. The antenna-based work popula-
tion (7:00am-7:00pm) was scaled by the percent of working age individuals and the percent
of employment in each area in order to probabilistically assign employment to individuals at
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Figure 1: Population density, sampling locations (antennas), and distribution of home locations
in Senegal based on sampling at antenna locations in the D4D datasets. The size of each political
department is also provided from a recent census.

each antenna location. This brings workers into contact (through the daytime movement of
individuals) who are located at work within the same antenna range. Figure 2 displays several
geospatial factors in the movement of people and spread of Ebola in Senegal, such as roadways,
border crossings, and location sampling (i.e., antenna locations). For the capital of Dakar, this
figure highlights the locations with increased social mixing through daytime interactions and
work locations. This mobility model improves the accuracy of simulating social connections
and mixing patterns between agents. This was accomplished by using the datasets of mobility
traces for hundreds of thousands of random individuals located throughout the country. Figure
3 displays the total travel between political districts within Senegal, i.e., arrondissements. Pre-
viously, simulations of remote or developing areas relied on coarse-grain, fully mixing models
that were produced from the same assumptions made for developed countries with completely
different social patterns or else extrapolated from limited, small scale surveys conducted by
workers on the ground. Through the D4D datasets, it is now possible to assign mobility based
on actual observed behavior, notably in remote locations.

3.4 Viral Trajectory, Disease Progression, and Propagation

The Ebola virus causes an often-fatal disease, with major outbreaks occurring over the last 40
years in Sudan, the Democratic Republic of Congo, and now across West Africa (Sierra Leone,
Liberia, Guinea, Nigeria, Mali, and Senegal). It is spread through contact with infected animals
(e.g., bats) or human bodily fluids. Modeling an Ebola epidemic requires models of propagation
between hosts and progression within a host. Computational epidemiology models typically
maintain a finite-state model for each individual. Each agent in the population maintains a
current state: susceptible, incubating, infectious, and recovered/fatality (i.e., an SIIR model).
Infected hosts follow one of two trends (viral load trajectories) that guide viral replication
and disease progression. The predicted daily viral load is used to provide realistic estimates
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Figure 2: Daily net migration (left callout) between residential areas and economic centers
(e.g., industrial, commercial, and agricultural) based on antenna locations in the capital of
Dakar. Geospatial map (right) of the roads, border crossings, and sampling locations (anten-
nas). Movement between the sampling locations provided high-resolution detail of mobility,
social contacts, and disease transmission pathways in the population models.

Figure 3: Mobility traces (travel) between arrondissements. The thickness of an edge between
two arrondissements represents the number of times individuals were observed traveling directly
from one arrondissement to the other, in either direction. A round trip between the two locations
would count as two separate hops.

of the first onset of symptoms and first possible diagnosis after the host is infected. The
time range between infection and first possible diagnosis (ascertainment delay) represents the
earliest length of time in which Ebola is detectable with current lab procedures [6]. Two viral
load trajectories (which determine the extent to which the virus replicates within a host) were
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developed, one resulting in death. The trajectories were based upon historical fatality rates
ranging from 40-70% [5] and prior determined trajectories [14].

3.5 Simulation Details

The software produced in this research was modified from an open-source software package,
FluTE. FluTE is a stochastic, agent-based simulation system for modeling the spread of in-
fluenza, based upon United States census data [7]. The program was modified and rewritten
to model the direct-contact transmission of the Ebola virus within the Senegalese population.
The process for producing a simulation engine for Ebola in Senegal required three steps.

• A population model was produced using D4D Challenge and census data. The developed
model assigns the home and travel locations of all 13 million residents to antenna locations.

• A mobility model for travel and movement within Senegal was produced using the D4D
dataset. The developed model contains the day and nighttime travel patterns of all
residents based on the observed movement between antennas within the dataset.

• FluTE’s source code was modified to provide a platform for Ebola progression and prop-
agation as well as Ebola transmission related parameters.

The simulation system requires four datasets as input to produce a prediction: geo-political
models (location of antennas and arrondissements), worker movement data (travel between
locations), employment data (movement of workers), and scenario configuration files. These
input datasets to the simulation system are based on the population and mobility models, as
described in sections 3.1-3.3. The following section summarizes the modifications of the existing
computational epidemiology platform and discusses the limitations of the simulations.

3.6 Disease Modeling

Along with the construction of D4D-informed population models, the simulation software was
modified to support prediction of Ebola. Table 1 details several modifications required to
properly describe Ebola. In contrast with the standard influenza duration period of a few days,
the incubation period for Ebola is many times longer. The incubation time period was changed
to 2-21 days [5]. This delays the onset of the disease and leads to a slow growing epidemic. While
influenza outbreaks are expected to be seasonal, Ebola outbreaks require more computational
processing due to the longer simulation time required for a multi-year simulation.

Parameter Range
Incubation period 2-21 days
Simulation length Multiple seasons and years
Viral Load Trajectories 2 trajectories, one fatal
Case fatality rate 40-70%
Days after death before burial 1-3 days

Table 1: Software modifications required to simulate Ebola.

Some features required to simulate Ebola already existed as parameters in FluTE. However,
minor software updates and scenario file parameterizations were required. The two possible
viral load trajectories of a patient were linked to the fatality of their Ebola case. As FluTE
does not simulate death, fatality was added in order to investigate the effects of burial practices.
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Parameter Range
Reproduction rate (R0) 1.51-2.53
Ascertainment delay 3 days after symptomatic
Models Population, airports, ports, borders, political boundaries, mobility

Table 2: Configuration parameters required to simulate Ebola.

Burial rituals were added to the simulation platform based on cultural practices and may be
modified through intervention policies. After the person is deceased, they are isolated at home
for 1 to 3 days to simulate burial practices in which family members prepare the deceased person
before burying them [9]. During this time, the deceased individual has their viral load set to
the highest level within their trajectory to simulate the high viral loads seen in patients before
and after dying from Ebola [8]. After the funeral, the deceased is removed from the population.

The basic reproduction rate in Table 2, denoted R0 (the number of secondary infections gen-
erated from an infectious person) was changed to the range 1.51-2.53 [1]. The ascertainment
delay is based on the time required to diagnosis Ebola in a patient using current experimental
lab techniques [6]. Multiple parameters are used to implement governmental policies, e.g., clos-
ing schools and borders. The software allows seeding infected persons in major ingresses, such as
airports. Thus, geospatial datasets regarding the location of airports, ports, and boarder cross-
ings were added to the software’s underlying assumptions. In addition, the software includes
features such as mitigation measures to reduce the extent of an outbreak.

There were aspects of FluTE that were not applicable to the Ebola disease model, such as
antiviral kits and vaccinations. Although research continues in this area, neither pharmaceutical
intervention is available for mitigation efforts as of this publication. Temporal seasonality was
inactivated, as historical outbreaks of Ebola do not correlate to specific times of the year [11].

4 Model Validation

The simulation software provides support for public health policy regarding the spread of Ebola
given potential scenarios. The developed model required extensive modifications of the FluTE
platform. To verify the results of the system, worst-case scenarios were compared with output
from a publicly available model provided by the Centers for Disease Control and Prevention
[15]. The CDC’s predictive model provides a coarse-grained extrapolation of expected infec-
tion counts. The CDC model predicts daily Ebola infections for a generic population of a user
defined size. However, the analytical model does not take the population structure, dynam-
ics, or topology into consideration or allow for predicting the effects of mitigation strategies.
The model provides a worst-case expectation for the spread of Ebola in the absence of public
policy or basic actions taken by individuals (e.g., staying home when sick). Figure 4 displays
the results of the D4D-informed stochastic model. For this figure, simulations were run with
the Senegalese population of 13,401,076, one initial index case, and parameters encoding cur-
rent assumptions regarding the characteristics of Ebola. The D4D-informed model produces
results in alignment with CDC predictions in addition to providing finer-resolution information
regarding each infected individual. As shown in Table 3, the CDC model predicts between 6.9
and 11.9 million infections depending on the average number of days a person is infectious.
This is in alignment with the stochastic model’s prediction of 8.9 million infections. The close
alignment demonstrates that the disaggregated, stochastic Ebola simulation model produces
the type of predicted result expected by analytical governmental agencies using high-level dif-

Mining Mobile Datasets and Stochastic Simulation of Ebola Vogel, Theisen, et al.

772



Figure 4: Simulation results from the D4D-
informed model detailing the count of cur-
rently infected individuals (symptomatic) and
total that have been infected (cumulative
symptomatic). These sample results are for
the worst-case baseline scenario without any
governmental intervention strategies.

Number of days infectious Total cases
10 (CDC Model) 6,886,748
11 (CDC Model) 9,370,528
12 (CDC Model) 10,921,851
13 (CDC Model) 11,939,709
Average result (our model) 8,966,151

Table 3: Predicted attack rates for a year-
long simulation by the analytical CDC model
and stochastic D4D-based model in a baseline
scenario (i.e., no governmental interventions
or preventative actions taken by individuals).
The new stochastic model may be used to pre-
dict the infection reduction after applying op-
tional governmental intervention strategies.

ferential equations. The D4D-based population model provided a realistic dataset that led to
the aligned simulation results. Senegal’s single confirmed Ebola case (fatal) in 2014 involved a
sick individual arriving in Dakar from neighboring Guinea. He was isolated by the Senegalese
government and did not spread the disease further even after 67 contacts with family and health
workers. Mobile datasets from neighboring countries would lead to additional calibration and
validation. In addition, future studies may predict the epidemics that result from policies.

5 Summary

Public health policies regarding preparation and planning for Ebola epidemics require accurate
predictions for successful mitigation and optimal use of resources. Computational epidemiology
and bioinformatics modeling of Ebola were developed to inform the simulation system regarding
viral progression within a host and the transmission between hosts. The simulation software was
developed to predict the spread of Ebola, specifically within West African countries. With the
software, public health officials may evaluate the cost, effect, and success of potential mitigation
strategies. The interventions available to policy makers include quarantine, isolation, border
closings, public and economic closures, travel restrictions, etc. Pharmaceutical interventions
(vaccines and antiviral kits) are possible to simulate should these treatments become available.

Stochastic models provide the possibility to analyze potential mitigation strategies in order
to set optimal public health policies. The use of our population, mobility, and stochastic sim-
ulation models provide more accurate simulation details in comparison to high-level analytical
predictions. The D4D mobile datasets provide high-resolution information useful for modeling
developing regions and hard to reach locations. The population models are based on the la-
tent movement, mobility, and population densities in Senegal and Ivory Coast. The simulation
software was shown to provide results in alignment with CDC Ebola predictions.
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